Online learning of Riemannian hidden Markov models in homogeneous Hadamard spaces

Hidden Markov models with observations in a Euclidean space play an important role in signal and image processing. Previous work extending to models where observations lie in Riemannian manifolds based on the Baum-Welch algorithm suffered from high memory usage and slow speed. Here we present an algorithm that is online, more accurate, and offers dramatic improvements in speed and efficiency.

[1]  Stan Z. Li,et al.  Markov Random Field Modeling in Image Analysis , 2001, Computer Science Workbench.

[2]  N. Ayache,et al.  Log‐Euclidean metrics for fast and simple calculus on diffusion tensors , 2006, Magnetic resonance in medicine.

[3]  Raf Vandebril,et al.  The Kähler Mean of Block-Toeplitz Matrices with Toeplitz Structured Blocks , 2016, SIAM J. Matrix Anal. Appl..

[4]  Nicolas Le Bihan,et al.  Hidden Markov chains and fields with observations in Riemannian manifolds , 2021 .

[5]  John B. Moore,et al.  On-line estimation of hidden Markov model parameters based on the Kullback-Leibler information measure , 1993, IEEE Trans. Signal Process..

[6]  Christian Jutten,et al.  Multiclass Brain–Computer Interface Classification by Riemannian Geometry , 2012, IEEE Transactions on Biomedical Engineering.

[7]  Xavier Pennec,et al.  A Riemannian Framework for Tensor Computing , 2005, International Journal of Computer Vision.

[8]  Dario Bini,et al.  Computing the Karcher mean of symmetric positive definite matrices , 2013 .

[9]  Haikady N. Nagaraja,et al.  Inference in Hidden Markov Models , 2006, Technometrics.

[10]  Sean R. Eddy,et al.  Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids , 1998 .

[11]  Pierre A. Devijver,et al.  Baum's forward-backward algorithm revisited , 1985, Pattern Recognit. Lett..

[12]  Salem Said,et al.  Gaussian Distributions on Riemannian Symmetric Spaces in the Large N Limit , 2021, GSI.

[13]  Jonathan H. Manton,et al.  Riemannian Gaussian Distributions on the Space of Symmetric Positive Definite Matrices , 2015, IEEE Transactions on Information Theory.

[14]  M. Tierz,et al.  Exact equivalences and phase discrepancies between random matrix ensembles , 2020, Journal of Statistical Mechanics: Theory and Experiment.

[15]  Miguel Tierz,et al.  Riemannian Gaussian distributions, random matrix ensembles and diffusion kernels , 2020, Nuclear Physics B.

[16]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.