Fluctuation analysis for particle-based stochastic reaction-diffusion models

. Recent works have derived and proven the large-population mean-field limit for several classes of particle-based stochastic reaction-diffusion (PBSRD) models. These limits correspond to systems of partial integral-differential equations (PIDEs) that generalize standard mass-action reaction-diffusion PDE models. In this work we derive and prove the next order fluctuation corrections to such limits, which we show satisfy systems of stochastic PIDEs with Gaussian noise. Numerical examples are presented to illustrate how including the fluctuation corrections can enable the accurate estimation of higher order statistics of the underlying PBSRD model.

[1]  S. Isaacson,et al.  Detailed balance for particle models of reversible reactions in bounded domains. , 2022, The Journal of chemical physics.

[2]  K. Spiliopoulos,et al.  Mean Field Limits of Particle-Based Stochastic Reaction-Diffusion Models , 2020, SIAM J. Math. Anal..

[3]  K. Spiliopoulos,et al.  How Reaction-Diffusion PDEs Approximate the Large-Population Limit of Stochastic Particle Models , 2020, SIAM J. Appl. Math..

[4]  L. Popovic,et al.  A spatial measure-valued model for chemical reaction networks in heterogeneous systems , 2020, The Annals of Applied Probability.

[5]  Tau Shean Lim,et al.  Quantitative Propagation of Chaos in a Bimolecular Chemical Reaction-Diffusion Model , 2019, SIAM J. Math. Anal..

[6]  Samuel A. Isaacson,et al.  An unstructured mesh convergent reaction-diffusion master equation for reversible reactions , 2017, J. Comput. Phys..

[7]  Thomas G. Kurtz,et al.  Stochastic Analysis of Biochemical Systems , 2015 .

[8]  S. Méléard,et al.  Stochastic Models for Structured Populations , 2015 .

[9]  Justin A. Sirignano,et al.  Fluctuation Analysis for the Loss from Default , 2013, 1304.1420.

[10]  S. Isaacson A convergent reaction-diffusion master equation. , 2012, Journal of Chemical Physics.

[11]  G. Burton Sobolev Spaces , 2013 .

[12]  J. Norris Appendix: probability and measure , 1997 .

[13]  Benjamin Jourdain,et al.  Lévy flights in evolutionary ecology , 2012, Journal of mathematical biology.

[14]  Xiongzhi Chen Brownian Motion and Stochastic Calculus , 2008 .

[15]  Vladas Sidoravicius,et al.  Stochastic Processes and Applications , 2007 .

[16]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[17]  T. Kurtz,et al.  A stochastic evolution equation arising from the fluctuations of a class of interacting particle systems , 2004 .

[18]  M. Doi,et al.  Second quantization representation for classical many-particle system , 2001 .

[19]  A. Haraux,et al.  An Introduction to Semilinear Evolution Equations , 1999 .

[20]  Sylvie Méléard,et al.  A Hilbertian approach for fluctuations on the McKean-Vlasov model , 1997 .

[21]  Philip Protter,et al.  Weak convergence of stochastic integrals and differential equations II: Infinite dimensional case , 1996 .

[22]  Sylvie Méléard,et al.  Sur les convergences étroite ou vague de processus à valeurs mesures , 1993 .

[23]  P. Protter Stochastic integration and differential equations , 1990 .

[24]  Karl Oelschläger,et al.  On the derivation of reaction-diffusion equations as limit dynamics of systems of moderately interacting stochastic processes , 1989 .

[25]  Sylvie Roelly‐ Coppoletta A criterion of convergence of measure‐valued processes: application to measure branching processes , 1986 .

[26]  M. Metivier,et al.  Weak convergence of sequences of semimartingales with applications to multitype branching processes , 1986, Advances in Applied Probability.

[27]  池田 信行,et al.  Stochastic differential equations and diffusion processes , 1981 .

[28]  D. W. Stroock,et al.  Multidimensional Diffusion Processes , 1979 .

[29]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[30]  M. Doi Stochastic theory of diffusion-controlled reaction , 1976 .

[31]  N. Shigesada,et al.  Theory of Bimolecular Reaction Processes in Liquids , 1967 .