Constructing Centroidal Voronoi Tessellations on Surface Meshes

Centroidal Voronoi tessellations can be constructed using iterative improvement methods such as Lloyd’s method. Using iterative improvement methods implies that the convergence speed and the quality of the results depend on the initialization methods. In this chapter, we briefly describe how to construct centroidal Voronoi tessellations on surface meshes and propose efficient initialization methods. The proposed methods try to make initial tessellations mimic the properties of the centroidal Voronoi tessellations. We compare our methods with other initialization methods: random sampling and farthest point sampling. The experimental results show that our methods have the faster convergence speed than farthest point sampling and outperform random sampling.

[1]  Mathieu Desbrun,et al.  Variational shape approximation , 2004, SIGGRAPH 2004.

[2]  Edwin H. Blake,et al.  Generic memoryless polygonal simplification , 2001, AFRIGRAPH '01.

[3]  C.-C. Jay Kuo,et al.  A new initialization technique for generalized Lloyd iteration , 1994, IEEE Signal Processing Letters.

[4]  Allen Gersho,et al.  Vector quantization and signal compression , 1991, The Kluwer international series in engineering and computer science.

[5]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[6]  H. Borouchaki,et al.  Geometric surface mesh optimization , 1998 .

[7]  Yehoshua Y. Zeevi,et al.  The farthest point strategy for progressive image sampling , 1997, IEEE Trans. Image Process..

[8]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[9]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[10]  Seungyong Lee,et al.  Transitive Mesh Space of a Progressive Mesh , 2003, IEEE Trans. Vis. Comput. Graph..

[11]  Tony DeRose,et al.  Mesh optimization , 1993, SIGGRAPH.

[12]  Takio Kurita,et al.  An Efficient Clustering Algorithm for Region Merging , 1995, IEICE Trans. Inf. Syst..

[13]  Michael Garland,et al.  Hierarchical face clustering on polygonal surfaces , 2001, I3D '01.

[14]  L. Cohen,et al.  Surface segmentation using geodesic centroidal tesselation , 2004 .

[15]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[16]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[17]  Pierre Alliez,et al.  Isotropic Remeshing of Surfaces: A Local Parameterization Approach , 2003, IMR.

[18]  Leif Kobbelt,et al.  Fast Mesh Decimation by Multiple-Choice Techniques , 2002, VMV.

[19]  Kazuo Murota,et al.  A fast Voronoi-diagram algorithm with applications to geographical optimization problems , 1984 .

[20]  Jean-Marc Chassery,et al.  Approximated Centroidal Voronoi Diagrams for Uniform Polygonal Mesh Coarsening , 2004, Comput. Graph. Forum.

[21]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[22]  Leif Kobbelt,et al.  Structure Recovery via Hybrid Variational Surface Approximation , 2005, Comput. Graph. Forum.

[23]  Amitabh Varshney,et al.  Dynamic view-dependent simplification for polygonal models , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[24]  Martin Isenburg,et al.  Isotropic surface remeshing , 2003, 2003 Shape Modeling International..

[25]  Dong-Ming Yan,et al.  Quadric Surface Extraction by Variational Shape Approximation , 2006, GMP.

[26]  Qiang Du,et al.  Constrained Centroidal Voronoi Tessellations for Surfaces , 2002, SIAM J. Sci. Comput..

[27]  William Equitz,et al.  A new vector quantization clustering algorithm , 1989, IEEE Trans. Acoust. Speech Signal Process..