A posteriori error estimate for finite volume approximations to singularly perturbed nonlinear convection-diffusion equations

Summary. This paper is devoted to the study of a posteriori and a priori error estimates for the scalar nonlinear convection diffusion equation $c_t + \nabla \cdot ( \u f(c)) - \varepsilon \Delta c = 0$. The estimates for the error between the exact solution and an upwind finite volume approximation to the solution are derived in the $L^1$-norm in the situation, where the diffusion parameter $\varepsilon$ is smaller or comparable to the mesh size. Numerical experiments underline the theoretical results.

[1]  Kenneth Eriksson,et al.  Adaptive streamline diffusion finite element methods for stationary convection-diffusion problems , 1993 .

[2]  Rüdiger Verfürth A posteriori error estimators for convection-diffusion equations , 1998, Numerische Mathematik.

[3]  Bernardo Cockburn,et al.  Error estimates for finite element methods for scalar conservation laws , 1996 .

[4]  E. Tadmor Local error estimates for discontinuous solutions of nonlinear hyperbolic equations , 1991 .

[5]  J. Jaffré Decentrage et elements finis mixtes pour les equations de diffusion-convection , 1984 .

[6]  J. Málek Weak and Measure-valued Solutions to Evolutionary PDEs , 1996 .

[7]  R. Eymard,et al.  Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes , 1998 .

[8]  Jean-Paul Vila,et al.  Convergence and error estimates in finite volume schemes for general multidimensional scalar conservation laws. I. Explicite monotone schemes , 1994 .

[9]  Mario Ohlberger,et al.  A posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in multi dimensions , 2000, Math. Comput..

[10]  Bernardo Cockburn,et al.  An error estimate for finite volume methods for multidimensional conservation laws , 1994 .

[11]  Philippe Angot,et al.  Analysis of a combined barycentric finite volume—nonconforming finite element method for nonlinear convection-diffusion problems , 1998 .

[12]  M. Stynes,et al.  Numerical methods for singularly perturbed differential equations : convection-diffusion and flow problems , 1996 .

[13]  Uno Nävert,et al.  An Analysis of some Finite Element Methods for Advection-Diffusion Problems , 1981 .

[14]  S. Kružkov FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .

[15]  R. Herbin,et al.  An Error Estimate for a Nite Volume Scheme for a Diiusion Convection Problem on a Triangular Mesh , 1995 .

[16]  N. N. Kuznetsov Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation , 1976 .

[17]  D. Kröner Numerical Schemes for Conservation Laws , 1997 .

[18]  J. Maubach,et al.  Nonconforming streamline-diffusion-finite-element-methods for convection-diffusion problems , 1997 .

[19]  R. Helmig Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems , 2011 .

[20]  Claire Chainais-Hillairet,et al.  Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate , 1999 .