Bridging the length scales between lithographic patterning and self assembly mechanisms in fabrication of semiconductor nanostructure arrays

We employ focused ion beam patterning of single crystal Si(100) surfaces to template the assembly of Ge(Si) nanostructure arrays. The evolution and final structures of the templated arrays are determined by combinations of transmission electron, low energy electron microscope, focused ion beam and scanning probe microscopies. It is shown how the positions of individual nanostructures may be controlled to the order of 10 nm. However, to achieve controlled spacings between elements that are in the 10 nm range requires careful matching of the characteristic lengths scales of self assembly mechanisms to the length scales of the external lithographic forcing functions.

[1]  M. Reuter,et al.  Pattern level assembly of Ge quantum dots on Si with focused ion beam templating , 2008 .

[2]  Robert Hull,et al.  Nanometer-scale control of single quantum dot nucleation through focused ion-beam implantation , 2007 .

[3]  J. Gray,et al.  Periodic arrays of epitaxial self-assembled SiGe quantum dot molecules grown on patterned Si substrates , 2006 .

[4]  M. Reuter,et al.  Mechanism of the nanoscale localization of Ge quantum dot nucleation on focused ion beam templated Si(001) surfaces , 2006 .

[5]  John C. Bean,et al.  Analysis of the three-dimensional ordering of epitaxial Ge quantum dots using focused ion beam tomography , 2006 .

[6]  G. Medeiros-Ribeiro,et al.  X-ray diffraction mapping of strain fields and chemical composition of SiGe: Si(001) quantum dot molecules , 2006 .

[7]  Laura Gonzalez Silva,et al.  Improved measurement of the b[overline b] production cross section in 920 GeV fixed-target proton-nucleus collisionsnd in 920 GeV fixed-target proton–nucleus collisions , 2006 .

[8]  J. Gray,et al.  Hierarchical Self-Assembly of Epitaxial Semiconductor Nanostructures , 2004 .

[9]  M. Reuter,et al.  Growth kinetics of Ge islands during Ga-surfactant-mediated ultrahigh vacuum chemical vapor deposition on Si(001) , 2004 .

[10]  S. Tarucha,et al.  Electron-spin and electron-orbital dependence of the tunnel coupling in laterally coupled double vertical dots. , 2004, Physical review letters.

[11]  N. Yokoyama,et al.  Single-dot spectroscopy via elastic single-electron tunneling through a pair of coupled quantum dots. , 2004, Physical review letters.

[12]  J. Gray,et al.  Kinetic size selection mechanisms in heteroepitaxial quantum dot molecules. , 2004, Physical review letters.

[13]  C. Lent,et al.  Clocked quantum-dot cellular automata shift register , 2003 .

[14]  M. Reuter,et al.  Lateral control of self-assembled island nucleation by focused-ion-beam micropatterning , 2003 .

[15]  Robert Hull,et al.  Control of surface morphology through variation of growth rate in SiGe/Si(100) epitaxial films: Nucleation of “quantum fortresses” , 2002 .

[16]  D. Cahill,et al.  Surface mass transport and island nucleation during growth of Ge on laser textured Si(001) , 2002 .

[17]  Snider,et al.  Digital logic gate using quantum-Dot cellular automata , 1999, Science.

[18]  L. B. Freund,et al.  Evolution of coherent islands in Si 12x Ge x /SiÑ001Ö , 1999 .

[19]  M. Hammar,et al.  In situ ultrahigh vacuum transmission electron microscopy studies of hetero-epitaxial growth I. {Si(001) }/{Ge} , 1996 .

[20]  J. Tersoff,et al.  Competing relaxation mechanisms in strained layers. , 1994, Physical review letters.

[21]  Kleiner,et al.  Mo et al. reply. , 1992, Physical review letters.

[22]  J. Blakely,et al.  Atomic step dynamics on periodic semiconductor surface structures , 1999 .

[23]  M. Lagally,et al.  Surface self-diffusion of Si on Si(001) , 1992 .