Genome Sequence of Additional Caenorhabditis species : Enhancing the Utility of C . elegans as a Model Organism

Overview The value of Caenorhabditis elegans as a model organism for biomedical research is unquestioned. The interpretation of its 100.2 Mb complete genome sequence has been enhanced by a high quality, 98% complete draft genome sequence for Caenorhabditis briggsae. However, comparison of any two species is not sufficient to define many sequence features, since features evolve at different rates, are of differing sizes and are detected with varying ease by a variety of tools. To allow better genome alignment, gene interpretation, promoter analysis, identification of non-coding RNAs (ncRNAs) and other functional features, as well as to explore the forces that mold these genomes, we propose sequencing the genomes of three additional Caenorhabditis species: Caenorhabditis remanei, Caenorhabditis n. sp. CB5161 and Caenorhabditis japonica. The first two are about the same evolutionary distance from C. elegans as is C. briggsae, while C. japonica is the closest outgroup to these four. Pilot studies that compare the sequence of known transcriptional enhancers from four species demonstrate that addition of C. remanei and CB5161 add great value when combined with C. briggsae data in the analysis of the C. elegans genome. Marginally conserved sequences between C. elegans and C. briggsae can be given more attention if also conserved in additional Caenorhabditis species or less attention if not conserved. Other functional elements may emerge from statistical noise in a four or five-way comparison and additional orthology will be determined, all of which will enhance and expand the value of C. elegans as a model for understanding human health and disease, and basic biological processes. In addition, these genomes will enable a variety of evolutionary genetic analyses in part because they encode male-female sexual systems while C. briggsae and C. elegans have hermaphrodite-male reproduction.

[1]  E. B. Goodwin,et al.  Conservation of the C.elegans tra‐2 3′UTR translational control , 1997, The EMBO journal.

[2]  Elena Rivas,et al.  Noncoding RNA gene detection using comparative sequence analysis , 2001, BMC Bioinformatics.

[3]  S. E. Baird Natural and experimental associations of Caenorhabditis remanei with Trachelipus rathkii and other terrestrial isopods , 1999 .

[4]  K. Kiontke,et al.  Description of Caenorhabditis japonica n. sp. (Nematoda: Rhabditida) associated with the burrower bug Parastrachia japonensis (Heteroptera: Cydnidae) in Japan , 2002 .

[5]  Min Han,et al.  Cis regulatory requirements for vulval cell-specific expression of the Caenorhabditis elegans fibroblast growth factor gene egl-17. , 2003, Developmental biology.

[6]  R. J. Hill,et al.  Structural requirements for the tissue-specific and tissue-general functions of the Caenorhabditis elegans epidermal growth factor LIN-3. , 1999, Genetics.

[7]  D. Fitch,et al.  Comparative studies on the phylogeny and systematics of the rhabditidae (nematoda). , 2001, Journal of nematology.

[8]  Gary Ruvkun,et al.  Functional tests of enhancer conservation between distantly related species , 2003, Development.

[9]  J. Schein,et al.  Conservation of sequence and function of the pag-3 genes from C. elegans and C. briggsae. , 2000, Gene.

[10]  Cori Bargmann,et al.  odr-10 Encodes a Seven Transmembrane Domain Olfactory Receptor Required for Responses to the Odorant Diacetyl , 1996, Cell.

[11]  P. Stothard,et al.  Sex‐determination gene and pathway evolution in nematodes , 2003, BioEssays : news and reviews in molecular, cellular and developmental biology.

[12]  S. Eddy,et al.  Computational identification of noncoding RNAs in E. coli by comparative genomics , 2001, Current Biology.

[13]  J. Ahringer Turn to the worm! , 1997, Current opinion in genetics & development.

[14]  M. Félix,et al.  Control of vulval competence and centering in the nematode Oscheius sp. 1 CEW1. , 2003, Genetics.

[15]  Ian Korf,et al.  Integrating genomic homology into gene structure prediction , 2001, ISMB.

[16]  G. Ruvkun,et al.  Regulation of the mec‐3 gene by the C.elegans homeoproteins UNC‐86 and MEC‐3. , 1992, The EMBO journal.

[17]  W. Wood The Nematode Caenorhabditis elegans , 1988 .

[18]  D. Sattelle,et al.  A role for Caenorhabditis elegans in understanding the function and interactions of human disease genes. , 2000, Human molecular genetics.

[19]  Jon D. McAuliffe,et al.  Phylogenetic Shadowing of Primate Sequences to Find Functional Regions of the Human Genome , 2003, Science.

[20]  W. J. Kent,et al.  Conservation, regulation, synteny, and introns in a large-scale C. briggsae-C. elegans genomic alignment. , 2000, Genome research.

[21]  P. Phillips,et al.  Molecular evolution and quantitative variation for chemosensory behaviour in the nematode genus Caenorhabditis , 2003, Molecular ecology.

[22]  Maciej Szymanski,et al.  Noncoding regulatory RNAs database , 2003, Nucleic Acids Res..

[23]  Alexey S Kondrashov,et al.  Analysis of similarity within 142 pairs of orthologous intergenic regions of Caenorhabditis elegans and Caenorhabditis briggsae. , 2002, Nucleic acids research.

[24]  S. Eddy,et al.  Computational identification of non-coding RNAs in Saccharomyces cerevisiae by comparative genomics. , 2003, Nucleic acids research.

[25]  Eric H Davidson,et al.  New computational approaches for analysis of cis-regulatory networks. , 2002, Developmental biology.

[26]  J. McGhee,et al.  The gut esterase gene (ges-1) from the nematodes Caenorhabditis elegans and Caenorhabditis briggsae. , 1993, Journal of molecular biology.

[27]  E. Haag,et al.  Regulatory elements required for development of caenorhabditis elegans hermaphrodites are conserved in the tra-2 homologue of C. remanei, a male/female sister species. , 2000, Genetics.

[28]  Mark L. Blaxter,et al.  A molecular evolutionary framework for the phylum Nematoda , 1998, Nature.

[29]  J. Kimble,et al.  Evolution of discrete Notch‐like receptors from a distant gene duplication in Caenorhabditis , 2002, Evolution & development.

[30]  B. J. Hwang,et al.  A cell-specific enhancer that specifies lin-3 expression in the C. elegans anchor cell for vulval development , 2004, Development.

[31]  J. Kimble,et al.  Conservation of glp-1 regulation and function in nematodes. , 2001, Genetics.

[32]  J A Eisen,et al.  Phylogenomics: improving functional predictions for uncharacterized genes by evolutionary analysis. , 1998, Genome research.

[33]  V. Ambros,et al.  An Extensive Class of Small RNAs in Caenorhabditis elegans , 2001, Science.

[34]  H. Chamberlin,et al.  Multiple regulatory changes contribute to the evolution of the Caenorhabditis lin-48 ovo gene. , 2002, Genes & development.

[35]  A. Pasquinelli,et al.  MicroRNAs: deviants no longer. , 2002, Trends in genetics : TIG.

[36]  H. Lipkin Where is the ?c? , 1978 .

[37]  B. Bass,et al.  RNA hairpins in noncoding regions of human brain and Caenorhabditis elegans mRNA are edited by adenosine deaminases that act on RNA , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[38]  M. Marra,et al.  Functional Genomics in Caenorhabditis elegans: An Approach Involving Comparisons of Sequences from Related Nematodes , 1999 .

[39]  G. Fox,et al.  Conservation of gene organization and trans-splicing in the glyceraldehyde-3-phosphate dehydrogenase-encoding genes of Caenorhabditis briggsae. , 1992, Gene.

[40]  L. Lim,et al.  An Abundant Class of Tiny RNAs with Probable Regulatory Roles in Caenorhabditis elegans , 2001, Science.

[41]  cis-Regulatory control of three cell fate-specific genes in vulval organogenesis of C. elegans and C. briggsae , 2003 .

[42]  E. B. Goodwin,et al.  Turning Clustering Loops: Sex Determination in Caenorhabditis elegans , 2002, Current Biology.

[43]  R. Durbin,et al.  The Genome Sequence of Caenorhabditis briggsae: A Platform for Comparative Genomics , 2003, PLoS biology.

[44]  Mathieu Blanchette,et al.  Separating real motifs from their artifacts , 2001, ISMB.

[45]  J. Hudson,et al.  C. elegans ORFeome version 1.1: experimental verification of the genome annotation and resource for proteome-scale protein expression , 2003, Nature Genetics.

[46]  B. Birren,et al.  Sequencing and comparison of yeast species to identify genes and regulatory elements , 2003, Nature.

[47]  V. Ambros,et al.  MicroRNAs and Other Tiny Endogenous RNAs in C. elegans , 2003, Current Biology.

[48]  L. Fulton,et al.  Finding Functional Features in Saccharomyces Genomes by Phylogenetic Footprinting , 2003, Science.

[49]  Thomas Blumenthal,et al.  Caenorhabditis elegans operons: form and function , 2003, Nature Reviews Genetics.

[50]  Henry F. Epstein,et al.  Caenorhabditis elegans : modern biological analysis of an organism , 1995 .

[51]  D. Baillie,et al.  Evolutionarily conserved coding sequences in the dpy-20-unc-22 region of Caenorhabditis elegans. , 1989, Genomics.

[52]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[53]  Y. Dong,et al.  Systematic functional analysis of the Caenorhabditis elegans genome using RNAi , 2003, Nature.

[54]  J. Berg Genome sequence of the nematode C. elegans: a platform for investigating biology. , 1998, Science.

[55]  A. Golden,et al.  RNA-Mediated interference of a cdc25 homolog in Caenorhabditis elegans results in defects in the embryonic cortical membrane, meiosis, and mitosis. , 1999, Developmental biology.

[56]  James D. McGhee,et al.  Coordination of ges-1 expression between the Caenorhabditis pharynx and intestine. , 2001, Developmental biology.

[57]  M. Tompa,et al.  Discovery of novel transcription factor binding sites by statistical overrepresentation. , 2002, Nucleic acids research.

[58]  M. Félix,et al.  Polymorphism and evolution of vulval precursor cell lineages within two nematode genera, Caenorhabditis and Oscheius , 2001, Current Biology.

[59]  P. Stothard,et al.  Evolution of the PP2C Family in Caenorhabditis: Rapid Divergence of the Sex-Determining Protein FEM-2 , 2002, Journal of Molecular Evolution.

[60]  M. Félix,et al.  The two steps of vulval induction in Oscheius tipulae CEW1 recruit common regulators including a MEK kinase. , 2004, Developmental biology.

[61]  Joshua M. Stuart,et al.  A Gene Expression Map for Caenorhabditis elegans , 2001, Science.

[62]  C. Burge,et al.  The microRNAs of Caenorhabditis elegans. , 2003, Genes & development.

[63]  R. Ellis,et al.  Specification of germ cell fates by FOG-3 has been conserved during nematode evolution. , 2001, Genetics.