Fuzzy Inference Systems Applied to Image Classification in the Industrial Field

The present chapter deals with the application of Fuzzy Inference Systems (FIS) for the classification of images, once they have been pre-processed through suitable algorithms. One of the main reasons for exploiting a FIS to this aim lies in the possibility of approaching the problem in a way similar to human reasoning. In fact a FIS allows:  To describe the problem in linguistic terms;  To translate the human experience (which is very often the reference starting point in industrial applications) through inference rules. The possibility of providing a methodological description in linguistic terms is a great advantage in problems that cannot be solved in terms of precise numerical relations, especially when only empirical a priori knowledge is available.  To perform an eventual further adaptation of the rules of the inference machine by exploiting the available data, as a neural training algorithm can be applied to tune some parameters of the fuzzy classifier.

[1]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[2]  Alvin M. Strauss,et al.  Application of fuzzy logic to spatial thermal control in fusion welding , 1999 .

[3]  Linda G. Shapiro,et al.  Computer and Robot Vision , 1991 .

[4]  Ebrahim Mamdani,et al.  Applications of fuzzy algorithms for control of a simple dynamic plant , 1974 .

[5]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Chi-Hyuck Jun,et al.  A simulation-based semiconductor chip yield model incorporating a new defect cluster index , 1999 .

[7]  Hongcan Yan,et al.  A SVM-Based Text Classification Method with SSK-Means Clustering Algorithm , 2009, 2009 International Conference on Artificial Intelligence and Computational Intelligence.

[8]  Bernard Widrow,et al.  Adaptive Signal Processing , 1985 .

[9]  Richard A. Brown,et al.  Introduction to random signals and applied kalman filtering (3rd ed , 2012 .

[10]  Marco Vannucci,et al.  Surface defects classification in steel products: a comparison between different Artificial Intelligence-based approaches , 2011 .

[11]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[12]  Jyh-Shing Roger Jang,et al.  Fuzzy Modeling Using Generalized Neural Networks and Kalman Filter Algorithm , 1991, AAAI.

[13]  Ueli Rutishauser,et al.  Control and learning of ambience by an intelligent building , 2005, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[14]  Reinhard Klette,et al.  Computer vision - three-dimensional data from images , 1998 .

[15]  Anselmo Montenegro,et al.  Adapting the Sobel Edge Detector and Canny Edge Extractor for iPhone 3GS architecture , 2010 .

[16]  Milan Sonka,et al.  Image Processing, Analysis and Machine Vision , 1993, Springer US.

[17]  Arthur Filippidis,et al.  Multisensor data fusion for surface land-mine detection , 2000, IEEE Trans. Syst. Man Cybern. Part C.

[18]  Emanuele Trucco,et al.  Introductory techniques for 3-D computer vision , 1998 .

[19]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[20]  K JainAnil,et al.  Small Sample Size Effects in Statistical Pattern Recognition , 1991 .

[21]  Kwangsoo Kim,et al.  APPLICATION OF FUZZY LOGIC TO VEHICLE CLASSIFICATION ALGORITHM IN LOOP/PIEZO-SENSOR FUSION SYSTEMS , 2008 .

[22]  R. Choras Image Feature Extraction Techniques and Their Applications for CBIR and Biometrics Systems , 2008 .

[23]  Pradeep K. Khosla,et al.  Robotic visual servoing and robotic assembly tasks , 1996, IEEE Robotics Autom. Mag..

[24]  John F. Jarvis Visual Inspection Automation , 1980, Computer.

[25]  Leeing Tong,et al.  Process Chart for Controlling Wafer Defects using Fuzzy Theory , 2003 .

[26]  P. Castrucci,et al.  Utilizing an integrated yield management system to improve the return on investment in IC manufacturing , 1991, 1991 Proceedings IEEE/SEMI International Semiconductor Manufacturing Science Symposium.

[27]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[28]  John Dalton Digital cameras and electronic color image acquisition , 1996, COMPCON '96. Technologies for the Information Superhighway Digest of Papers.

[29]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Jamshid Shanbehzadeh,et al.  An Experimental Machine Vision System for Quality Control of Industrial Colour Printer , 2009, 2009 Second International Conference on Machine Vision.

[31]  Stefano FERRARI,et al.  Neural Networks in Intelligent Sensors and Measurement Systems for Industrial Applications , 2002 .

[32]  In-Sung Cho,et al.  A NEW LOOP-DETECTOR CIRCUIT FOR IMPROVING LOW-SPEED PERFORMANCE , 1999 .

[33]  Marco Vannucci,et al.  A Fuzzy Inference System Applied to Defect Detection in Flat Steel Production , 2010, IEEE WCCI 2010.

[34]  Simon Haykin,et al.  Neural networks , 1994 .

[35]  David Naso,et al.  A fuzzy-logic based optical sensor for online weld defect-detection , 2005, IEEE Transactions on Industrial Informatics.

[36]  V. Piuri,et al.  Computational intelligence in industrial quality control , 2005, IEEE International Workshop on Intelligent Signal Processing, 2005..

[37]  Valentina Colla,et al.  A 3D Vision-Based Solution for Product Picking In Industrial Applications , 2010 .

[38]  Patrizia Sforza,et al.  On-line optical monitoring system for arc welding , 2002 .

[39]  Brian A. Wandell,et al.  Common principles of image acquisition systems and biological vision , 2002, Proc. IEEE.

[40]  Euripides G. M. Petrakis,et al.  A survey on industrial vision systems, applications, tools , 2003, Image Vis. Comput..

[41]  John G. Proakis,et al.  Digital Signal Processing: Principles, Algorithms, and Applications , 1992 .

[42]  Ajith Abraham,et al.  Rule-Based Expert Systems , 2005 .

[43]  Susan L. Albin,et al.  Clustered defects in IC fabrication: Impact on process control charts , 1991 .

[44]  Olga Miljkovic IMAGE PRE-PROCESSING TOOL , 2009 .

[45]  R Scanne,et al.  Automated Visual Inspection: A Survey , 1982 .

[46]  Johannes R. Sveinsson,et al.  Parallel consensual neural networks , 1997, IEEE Trans. Neural Networks.

[47]  S-W Eun Kim PERFORMANCE COMPARISON OF LOOP/PIEZO AND ULTRASONIC SENSOR-BASED TRAFFIC DETECTION SYSTEMS FOR COLLECTING INDIVIDUAL VEHICLE INFORMATION , 1998 .

[48]  Alaa M. Elsayad Classification of ECG arrhythmia using learning vector quantization neural networks , 2009, 2009 International Conference on Computer Engineering & Systems.

[49]  James J. Little,et al.  Vision-based global localization and mapping for mobile robots , 2005, IEEE Transactions on Robotics.

[50]  Azriel Rosenfeld,et al.  Picture Processing by Computer , 1969, CSUR.

[51]  Irwin Edward Sobel,et al.  Camera Models and Machine Perception , 1970 .

[52]  Cristina P. Santos,et al.  Cork Parquet Quality Control Vision System Based on Texture Segmentation and Fuzzy Grammar , 2009, IEEE Transactions on Industrial Electronics.

[53]  C. K. Yuen,et al.  Theory and Application of Digital Signal Processing , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[54]  J.C. Bezdek,et al.  Computing with uncertainty , 1992, IEEE Communications Magazine.

[55]  Isabelle Bloch Information combination operators for data fusion: a comparative review with classification , 1996, IEEE Trans. Syst. Man Cybern. Part A.

[56]  Paul J. Werbos,et al.  The roots of backpropagation , 1994 .

[57]  Roland T. Chin,et al.  An Automated Approach to the Design of Decision Tree Classifiers , 1982 .

[58]  Henry Leung,et al.  Neural data fusion algorithms based on a linearly constrained least square method , 2002, IEEE Trans. Neural Networks.

[59]  Yu-Ming Zhang,et al.  Robust sensing of arc length , 2001, IEEE Trans. Instrum. Meas..

[60]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .