OTULIN protects the liver against cell death, inflammation, fibrosis, and cancer

[1]  P. R. Elliott,et al.  Regulation of the endosomal SNX27-retromer by OTULIN , 2019, Nature Communications.

[2]  Nieves Peltzer,et al.  Cell Death and Inflammation - A Vital but Dangerous Liaison. , 2019, Trends in immunology.

[3]  P. R. Elliott,et al.  OTULIN deficiency in ORAS causes cell type‐specific LUBAC degradation, dysregulated TNF signalling and cell death , 2019, EMBO molecular medicine.

[4]  D. Komander,et al.  Breaking the chains: deubiquitylating enzyme specificity begets function , 2019, Nature Reviews Molecular Cell Biology.

[5]  A. Voet,et al.  Auto-inflammation in a Patient with a Novel Homozygous OTULIN Mutation , 2019, Journal of Clinical Immunology.

[6]  Pengda Liu,et al.  Control of mTOR Signaling by Ubiquitin , 2018, Oncogene.

[7]  E. Salido,et al.  CRISPR/Cas9-mediated glycolate oxidase disruption is an efficacious and safe treatment for primary hyperoxaluria type I , 2018, Nature Communications.

[8]  Dirk Mossmann,et al.  mTOR signalling and cellular metabolism are mutual determinants in cancer , 2018, Nature Reviews Cancer.

[9]  J. Bertin,et al.  LUBAC prevents lethal dermatitis by inhibiting cell death induced by TNF, TRAIL and CD95L , 2018, Nature Communications.

[10]  T. Sixma,et al.  Active site alanine mutations convert deubiquitinases into high‐affinity ubiquitin‐binding proteins , 2018, EMBO reports.

[11]  L. Komuves,et al.  OTULIN limits cell death and inflammation by deubiquitinating LUBAC , 2018, Nature.

[12]  J. Bertin,et al.  LUBAC is essential for embryogenesis by preventing cell death and enabling haematopoiesis , 2018, Nature.

[13]  D. Hasselquist,et al.  No evidence that carotenoid pigments boost either immune or antioxidant defenses in a songbird , 2018, Nature Communications.

[14]  M. Hall,et al.  mTORC2 Promotes Tumorigenesis via Lipid Synthesis. , 2017, Cancer cell.

[15]  A. Dart Tumour microenvironment: Microbes matter , 2017, Nature Reviews Cancer.

[16]  M. Gyrd-Hansen,et al.  The Met1-Linked Ubiquitin Machinery: Emerging Themes of (De)regulation. , 2017, Molecular cell.

[17]  Stephen P. Jackson,et al.  Deubiquitylating enzymes and drug discovery: emerging opportunities , 2017, Nature Reviews Drug Discovery.

[18]  Y. Shimizu,et al.  The Linear ubiquitin chain assembly complex acts as a liver tumor suppressor and inhibits hepatocyte apoptosis and hepatitis , 2017, Hepatology.

[19]  Rudi Beyaert,et al.  CYLD, A20 and OTULIN deubiquitinases in NF-κB signaling and cell death: so similar, yet so different , 2017, Cell Death and Differentiation.

[20]  P. R. Elliott Molecular basis for specificity of the Met1-linked polyubiquitin signal , 2016, Biochemical Society transactions.

[21]  C. Borner,et al.  SPATA2 promotes CYLD activity and regulates TNF‐induced NF‐κB signaling and cell death , 2016, EMBO reports.

[22]  P. R. Elliott,et al.  SPATA2 Links CYLD to LUBAC, Activates CYLD, and Controls LUBAC Signaling , 2016, Molecular cell.

[23]  Sebastian A. Wagner,et al.  SPATA2 links CYLD to the TNF‐α receptor signaling complex and modulates the receptor signaling outcomes , 2016, The EMBO journal.

[24]  P. R. Elliott,et al.  The Deubiquitinase OTULIN Is an Essential Negative Regulator of Inflammation and Autoimmunity , 2016, Cell.

[25]  J. Mullikin,et al.  Biallelic hypomorphic mutations in a linear deubiquitinase define otulipenia, an early-onset autoinflammatory disease , 2016, Proceedings of the National Academy of Sciences.

[26]  K. Rittinger,et al.  SPATA2-Mediated Binding of CYLD to HOIP Enables CYLD Recruitment to Signaling Complexes , 2016, Cell reports.

[27]  H. Walczak,et al.  Formation and removal of poly‐ubiquitin chains in the regulation of tumor necrosis factor‐induced gene activation and cell death , 2016, The FEBS journal.

[28]  L. Catrysse,et al.  A20 prevents chronic liver inflammation and cancer by protecting hepatocytes from death , 2016, Cell Death and Disease.

[29]  Hongbo Hu,et al.  Ubiquitin signaling in immune responses , 2016, Cell Research.

[30]  P. R. Elliott,et al.  CYLD Limits Lys63- and Met1-Linked Ubiquitin at Receptor Complexes to Regulate Innate Immune Signaling , 2016, Cell reports.

[31]  K. Rittinger,et al.  LUBAC-Recruited CYLD and A20 Regulate Gene Activation and Cell Death by Exerting Opposing Effects on Linear Ubiquitin in Signaling Complexes , 2015, Cell reports.

[32]  P. Schirmacher,et al.  NEMO Prevents Steatohepatitis and Hepatocellular Carcinoma by Inhibiting RIPK1 Kinase Activity-Mediated Hepatocyte Apoptosis , 2015, Cancer cell.

[33]  K. J. Patel,et al.  Endogenous Formaldehyde Is a Hematopoietic Stem Cell Genotoxin and Metabolic Carcinogen , 2015, Molecular cell.

[34]  T. Weichhart,et al.  Regulation of innate immune cell function by mTOR , 2015, Nature Reviews Immunology.

[35]  Y. Shimizu,et al.  Linear ubiquitination in immunity , 2015, Immunological reviews.

[36]  Tak W. Mak,et al.  Regulation of tumour necrosis factor signalling: live or let die , 2015, Nature Reviews Immunology.

[37]  V. Paradis,et al.  Oxidative stress promotes pathologic polyploidization in nonalcoholic fatty liver disease. , 2015, The Journal of clinical investigation.

[38]  I. Dikic,et al.  Sharpin prevents skin inflammation by inhibiting TNFR1-induced keratinocyte apoptosis , 2014, eLife.

[39]  D. Vaux,et al.  TNFR1-dependent cell death drives inflammation in Sharpin-deficient mice , 2014, eLife.

[40]  J. Martinez-Barbera,et al.  HOIP deficiency causes embryonic lethality by aberrant TNFR1-mediated endothelial cell death. , 2014, Cell reports.

[41]  Neil Kaplowitz,et al.  Cell death and cell death responses in liver disease: mechanisms and clinical relevance. , 2014, Gastroenterology.

[42]  Michelle C. Schaeffer,et al.  Cutting Edge: RIP1 kinase activity is dispensable for normal development but is a key regulator of inflammation in SHARPIN-deficient mice. , 2014, Journal of immunology.

[43]  X. Guan,et al.  The genetic and epigenetic alterations in human hepatocellular carcinoma: a recent update , 2014, Protein & Cell.

[44]  Michael H. Olma,et al.  Binding of OTULIN to the PUB domain of HOIP controls NF-κB signaling. , 2014, Molecular cell.

[45]  P. R. Elliott,et al.  Molecular Basis and Regulation of OTULIN-LUBAC Interaction , 2014, Molecular cell.

[46]  S. Thorgeirsson,et al.  Targeting the mTOR pathway in hepatocellular carcinoma: current state and future trends. , 2014, Journal of hepatology.

[47]  Zheng Zhang,et al.  The role of neutrophils in the development of liver diseases , 2014, Cellular and Molecular Immunology.

[48]  Y. Saeki,et al.  Suppression of LUBAC‐mediated linear ubiquitination by a specific interaction between LUBAC and the deubiquitinases CYLD and OTULIN , 2014, Genes to cells : devoted to molecular & cellular mechanisms.

[49]  Sebastian A. Wagner,et al.  OTULIN restricts Met1-linked ubiquitination to control innate immune signaling. , 2013, Molecular cell.

[50]  Kay Hofmann,et al.  OTULIN Antagonizes LUBAC Signaling by Specifically Hydrolyzing Met1-Linked Polyubiquitin , 2013, Cell.

[51]  Wade H. Dunham,et al.  The linear ubiquitin-specific deubiquitinase Gumby/Fam105b regulates angiogenesis , 2013, Nature.

[52]  Li-jian Yang,et al.  The role of A20 in the pathogenesis of lymphocytic malignancy , 2012, Cancer Cell International.

[53]  I. Dikic,et al.  A20 inhibits LUBAC‐mediated NF‐κB activation by binding linear polyubiquitin chains via its zinc finger 7 , 2012, The EMBO journal.

[54]  G. Kollias,et al.  Inactivation of the deubiquitinase CYLD in hepatocytes causes apoptosis, inflammation, fibrosis, and cancer. , 2012, Cancer cell.

[55]  V. Quesada,et al.  Deubiquitinases in cancer: new functions and therapeutic options , 2012, Oncogene.

[56]  R. Bronson,et al.  Chronic Activation of mTOR Complex 1 Is Sufficient to Cause Hepatocellular Carcinoma in Mice , 2012, Science Signaling.

[57]  T. Luedde,et al.  NF-κB in the liver—linking injury, fibrosis and hepatocellular carcinoma , 2011, Nature Reviews Gastroenterology &Hepatology.

[58]  M. Karin,et al.  Immunity, Inflammation, and Cancer , 2010, Cell.

[59]  J. R. Prigge,et al.  Cre activity in fetal albCre mouse hepatocytes: Utility for developmental studies , 2009, Genesis.

[60]  David Komander,et al.  Molecular discrimination of structurally equivalent Lys 63‐linked and linear polyubiquitin chains , 2009, EMBO reports.

[61]  Nobuhiro Suzuki,et al.  Specific Recognition of Linear Ubiquitin Chains by NEMO Is Important for NF-κB Activation , 2009, Cell.

[62]  M. Karin,et al.  NF-κB signaling, liver disease and hepatoprotective agents , 2008, Oncogene.

[63]  A. Ashworth,et al.  The structure of the CYLD USP domain explains its specificity for Lys63-linked polyubiquitin and reveals a B box module. , 2008, Molecular cell.

[64]  T. Luedde,et al.  Deletion of NEMO/IKKγ in Liver Parenchymal Cells Causes Steatohepatitis and Hepatocellular Carcinoma , 2007 .

[65]  Keiji Tanaka,et al.  A ubiquitin ligase complex assembles linear polyubiquitin chains , 2006, The EMBO journal.

[66]  T. Roskams,et al.  Preneoplastic lesions in human hepatocarcinogenesis , 2005, Liver international : official journal of the International Association for the Study of the Liver.

[67]  M. Magnuson,et al.  Dual Roles for Glucokinase in Glucose Homeostasis as Determined by Liver and Pancreatic β Cell-specific Gene Knock-outs Using Cre Recombinase* , 1999, The Journal of Biological Chemistry.

[68]  C. Ware,et al.  TNF receptor-deficient mice reveal divergent roles for p55 and p75 in several models of inflammation. , 1998, Journal of immunology.

[69]  I. Wanless,et al.  Terminology of nodular hepatocellular lesions , 1995 .

[70]  Xin Li,et al.  Deubiquitylating Enzymes , 2020, Encyclopedia of Molecular Pharmacology.

[71]  G. Gores,et al.  Hepatocellular carcinoma , 2016, Nature Reviews Disease Primers.

[72]  S-C Sun CYLD: a tumor suppressor deubiquitinase regulating NF-κB activation and diverse biological processes , 2010, Cell Death and Differentiation.

[73]  T. Luedde,et al.  Deletion of NEMO/IKKgamma in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. , 2007, Cancer cell.

[74]  G. Farrell,et al.  LIVER FAILURE AND LIVER DISEASE Nonalcoholic Fatty Liver Disease: From Steatosis to Cirrhosis , 2006 .

[75]  T. Roskams,et al.  Early hepatocellular carcinoma and dysplastic nodules. , 2005, Seminars in liver disease.

[76]  D. Woodfield Hepatocellular carcinoma. , 1986, The New Zealand medical journal.

[77]  M. Van Deficient Mice , 2022 .