The role of grain boundaries in determining J c in high-field high-current superconductors

Abstract The scaling laws that describe flux pinning in the two most common commercial superconductors, NbTi and Nb3Sn made by the bronze process, are totally different. This is despite the fact the microstructural features that are responsible for flux pinning, sub-boundaries in NbTi and grain boundaries in Nb3Sn, in both cases have concentrations of what in the bulk would be non-superconducting material. The only significant differences between the microstructures of the two materials is the morphology of the boundary structure. It is shown how this can lead to the two distinct pinning behaviours.

[1]  J. E. Evetts,et al.  Flux vortices and transport currents in type II superconductors , 2001 .

[2]  J. Evetts,et al.  Collective flux pinning in a defective flux vortex lattice , 1985 .

[3]  H. Jones,et al.  An in depth characterization of (NbTa) 3 Sn filamentary superconductor , 1985 .

[4]  D. Larbalestier,et al.  New perspectives on flux pinning in niobium-titanium composite superconductors , 1984 .

[5]  D. Larbalestier,et al.  Microstructural changes produced in a multifilamentary Nb-Ti composite by cold work and heat treatment , 1984 .

[6]  E. Gibson,et al.  Effect of Ta Additions upon in situ Prepared Nb3Sn-Cu Superconducting Wire , 1984 .

[7]  W. Jansen,et al.  Chemical compositions at and near the grain boundaries in bronze‐processed superconducting Nb3Sn , 1983 .

[8]  E. Gibson,et al.  Flux pinning for In situ Nb3Sn superconducting wire , 1983 .

[9]  E. Kramer,et al.  Flux pinning by thin planar defects , 1982 .

[10]  E. Kramer,et al.  The proximity effect in flux pinning , 1980 .

[11]  A. Larkin,et al.  Pinning in type II superconductors , 1979 .

[12]  D. Cox,et al.  Superconductivity and atomic ordering in neutron-irradiated Nb/sub 3/Al , 1975 .

[13]  R. Hammond Electron beam evaporation synthesis of A15 superconducting compounds: Accomplishments and prospects , 1975 .

[14]  C. Herring The observation of flux line pinning in superconducting foils , 1974 .

[15]  A. Woolcock,et al.  Structure and superconducting properties of Nb44% Ti wire , 1971 .

[16]  E. Kramer Dynamics of Dislocation Dipole Motion in the Flux Line Lattice of Type‐II Superconductors , 1970 .

[17]  W. Webb,et al.  Hysteresis in Superconducting Alloys-Temperature and Field Dependence of Dislocation Pinning in Niobium Alloys , 1969 .

[18]  F. Irie,et al.  On the concept of pinning force in type II superconductors , 1967 .

[19]  A. Pippard Field variation of the superconducting penetration depth , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[20]  J. Frenkel Zur Theorie der Elastizitätsgrenze und der Festigkeit kristallinischer Körper , 1926 .

[21]  G. Zerweck On pinning of superconducting flux lines by grain boundaries , 1981 .

[22]  A. Clark,et al.  Filamentary A15 superconductors , 1980 .

[23]  D. Welch,et al.  Flux Pinning in Bronze-Processed Nb3Sn Wires , 1980 .

[24]  M. Suenaga,et al.  Critical‐current densities of bronze‐processed Nb3(Sn1−xGax) wires up to 23.5 T , 1978 .

[25]  M. T. Taylor,et al.  Critical supercurrents and the pinning of vortices in commercial Ng-60 at% Ti , 1972 .

[26]  R. Labusch Elastic Constants of the Fluxoid Lattice Near the Upper Critical Field , 1969 .

[27]  E. Brandt Die Behandlung von Fehlern im Fußliniengitter der Supraleiter 2. Art in der Nähe von Hc2 , 1969 .

[28]  M. Cyrot,et al.  The magnetic behavior of dirty superconductors , 1966 .

[29]  A. Narlikar,et al.  The Effect of Dislocation Configuration on the Superconducting Properties of Niobium and Vanadium , 1964 .