暂无分享,去创建一个
Pietro Perona | Frederick Eberhardt | Krzysztof Chalupka | P. Perona | Krzysztof Chalupka | F. Eberhardt
[1] Bernhard Schölkopf,et al. Identifying confounders using additive noise models , 2009, UAI.
[2] David Maxwell Chickering,et al. Optimal Structure Identification With Greedy Search , 2002, J. Mach. Learn. Res..
[3] David Maxwell Chickering,et al. Learning Equivalence Classes of Bayesian Network Structures , 1996, UAI.
[4] Christopher Meek,et al. Strong completeness and faithfulness in Bayesian networks , 1995, UAI.
[5] Bernhard Schölkopf,et al. Distinguishing Cause from Effect Using Observational Data: Methods and Benchmarks , 2014, J. Mach. Learn. Res..
[6] John Salvatier,et al. Theano: A Python framework for fast computation of mathematical expressions , 2016, ArXiv.
[7] Bernhard Schölkopf,et al. Nonlinear causal discovery with additive noise models , 2008, NIPS.
[8] Aapo Hyvärinen,et al. On the Identifiability of the Post-Nonlinear Causal Model , 2009, UAI.
[9] Aapo Hyvärinen,et al. A Linear Non-Gaussian Acyclic Model for Causal Discovery , 2006, J. Mach. Learn. Res..
[10] Dan Geiger,et al. On the logic of causal models , 2013, UAI.
[11] J. Pearl. Causality: Models, Reasoning and Inference , 2000 .
[12] Patrik O. Hoyer,et al. Estimation of causal effects using linear non-Gaussian causal models with hidden variables , 2008, Int. J. Approx. Reason..
[13] Tom Burr,et al. Causation, Prediction, and Search , 2003, Technometrics.
[14] Bernhard Schölkopf,et al. Causal Inference on Discrete Data Using Additive Noise Models , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[15] David Maxwell Chickering,et al. Learning Bayesian Networks: The Combination of Knowledge and Statistical Data , 1994, Machine Learning.
[16] Bernhard Schölkopf,et al. Causal Inference by Choosing Graphs with Most Plausible Markov Kernels , 2006, AI&M.