Guarantees of Augmented Trace Norm Models in Tensor Recovery

This paper studies the recovery guarantees of the models of minimizing $\|\mathcal{X}\|_*+\frac{1}{2\alpha}\|\mathcal{X}\|_F^2$ where $\mathcal{X}$ is a tensor and $\|\mathcal{X}\|_*$ and $\|\mathcal{X}\|_F$ are the trace and Frobenius norm of respectively. We show that they can efficiently recover low-rank tensors. In particular, they enjoy exact guarantees similar to those known for minimizing $\|\mathcal{X}\|_*$ under the conditions on the sensing operator such as its null-space property, restricted isometry property, or spherical section property. To recover a low-rank tensor $\mathcal{X}^0$, minimizing $\|\mathcal{X}\|_*+\frac{1}{2\alpha}\|\mathcal{X}\|_F^2$ returns the same solution as minimizing $\|\mathcal{X}\|_*$ almost whenever $\alpha\geq10\mathop {\max}\limits_{i}\|X^0_{(i)}\|_2$.

[1]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[2]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[3]  Jieping Ye,et al.  Tensor Completion for Estimating Missing Values in Visual Data , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Babak Hassibi,et al.  A simplified approach to recovery conditions for low rank matrices , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[5]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[6]  T. Kolda Multilinear operators for higher-order decompositions , 2006 .

[7]  Rémi Gribonval,et al.  Sparse representations in unions of bases , 2003, IEEE Trans. Inf. Theory.

[8]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[9]  Song Li,et al.  New bounds on the restricted isometry constant δ2k , 2011 .

[10]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[11]  Yin Zhang,et al.  Theory of Compressive Sensing via ℓ1-Minimization: a Non-RIP Analysis and Extensions , 2013 .

[12]  Wotao Yin,et al.  Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .

[13]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[14]  Wotao Yin,et al.  Augmented 퓁1 and Nuclear-Norm Models with a Globally Linearly Convergent Algorithm , 2012, SIAM J. Imaging Sci..

[15]  Ryota Tomioka,et al.  Estimation of low-rank tensors via convex optimization , 2010, 1010.0789.

[16]  B. Recht,et al.  Tensor completion and low-n-rank tensor recovery via convex optimization , 2011 .

[17]  Hisashi Kashima,et al.  Statistical Performance of Convex Tensor Decomposition , 2011, NIPS.

[18]  Jieping Ye,et al.  Tensor Completion for Estimating Missing Values in Visual Data , 2013, IEEE Trans. Pattern Anal. Mach. Intell..