A framework for developing associative classifiers based on ICA

Abstract Connective approaches are useful for developing theoretical tools for classifying, filtering, and modeling raw data. The redundancy of inputs and system states allows the development of approximations for nonlinear problems. One of the most useful connective approaches is the use of associative memory ; it creates a relation between data inputs and data outputs through a linear relationship expressed by a matrix. This relation is usually expressed in the binary domain, and the learning process consists of how the linear matrix is built and weighted. Associative memory approaches are founded on the linear independence concept, which defines when a particular mixture of inputs can be associated with a mixture of outputs. The redundancy of states is useful for creating a better approximation when the input and outputs are not strictly linearly related. This work presents a new family of associative memories, expanding the concept of independence to create the relation between inputs and outputs. This approach is founded on two different types of independence: linear independence and probabilistic independence. We present and discuss the foundations and concepts involved. Then, we show the practical results obtained after applying this new framework as a pattern classifier in image analysis tasks.

[1]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[2]  Simone Santini,et al.  Similarity Measures , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Martin A. Giese,et al.  Morphable Models for the Analysis and Synthesis of Complex Motion Patterns , 2000, International Journal of Computer Vision.

[4]  Shyamsundar Rajaram,et al.  Human Activity Recognition Using Multidimensional Indexing , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[6]  Azriel Rosenfeld,et al.  Face recognition: A literature survey , 2003, CSUR.

[7]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[8]  T. Kuhn,et al.  The Structure of Scientific Revolutions. , 1964 .

[9]  Gregory J. Chaitin,et al.  Algorithmic Information Theory , 1987, IBM J. Res. Dev..

[10]  W. Eric L. Grimson,et al.  Learning Patterns of Activity Using Real-Time Tracking , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Larry S. Davis,et al.  EigenGait: Motion-Based Recognition of People Using Image Self-Similarity , 2001, AVBPA.

[13]  O. G. Selfridge,et al.  Pandemonium: a paradigm for learning , 1988 .

[14]  Valerie Pitt The penguin dictionary of physics , 1977 .

[15]  Marvin Minsky,et al.  Perceptrons: An Introduction to Computational Geometry , 1969 .

[16]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .

[17]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[18]  Erkki Oja,et al.  Independent component analysis: algorithms and applications , 2000, Neural Networks.

[19]  Pierre Comon,et al.  Handbook of Blind Source Separation: Independent Component Analysis and Applications , 2010 .

[20]  BART KOSKO,et al.  Bidirectional associative memories , 1988, IEEE Trans. Syst. Man Cybern..

[21]  L. Davis,et al.  Background and foreground modeling using nonparametric kernel density estimation for visual surveillance , 2002, Proc. IEEE.

[22]  A. M. Turing,et al.  The Essential Turing: Seminal Writings in Computing, Logic, Philosophy, Artificial Intelligence, and Artificial Life plus The Secrets of Enigma , 2004 .

[23]  Ying Liu,et al.  A survey of content-based image retrieval with high-level semantics , 2007, Pattern Recognit..

[24]  Pentti Kanerva,et al.  Sparse Distributed Memory , 1988 .

[25]  Emanuele Trucco,et al.  Introductory techniques for 3-D computer vision , 1998 .

[26]  Wolfgang Christian,et al.  Dynamics of Complex Systems (Studies in Nonlinearity) , 1998 .

[27]  Sean M. Polyn,et al.  Memory search and the neural representation of context , 2008, Trends in Cognitive Sciences.

[28]  Robert T. Collins,et al.  Silhouette-based human identification from body shape and gait , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[29]  R. Hodel An Introduction to Mathematical Logic , 1995 .

[30]  Claude E. Shannon,et al.  A mathematical theory of communication , 1948, MOCO.

[31]  Mircea Andrecut,et al.  Parallel GPU Implementation of Iterative PCA Algorithms , 2008, J. Comput. Biol..

[32]  B. Copeland,et al.  Beyond the universal Turing machine , 1999 .

[33]  Aaron F. Bobick,et al.  Parametric Hidden Markov Models for Gesture Recognition , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Jake K. Aggarwal,et al.  Human Motion Analysis: A Review , 1999, Comput. Vis. Image Underst..

[35]  Jake K. Aggarwal,et al.  Human motion analysis: a review , 1997, Proceedings IEEE Nonrigid and Articulated Motion Workshop.

[36]  Christopher Comer Spikes: Exploring the Neural Code. Computational Neuroscience.Fred Rieke , David Warland , Rob de Ruyter van Steveninck, William Bialek , 1998 .

[37]  M. Minsky The Society of Mind , 1986 .

[38]  Zhengyou Zhang,et al.  A Survey of Recent Advances in Face Detection , 2010 .

[39]  R. Gregory Taylor Zermelo, reductionism, and the philosophy of mathematics , 1993, Notre Dame J. Formal Log..

[40]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.