The structural, electronic and magnetic properties of a novel quaternary Heusler alloy TiZrCoSn

Abstract The structural, electronic and magnetic properties of the quaternary Heusler alloy TiZrCoSn have been investigated firstly by using the first-principles calculations within GGA and GGA+U methods. The structural study shows the Y-type (I) is the most stable configuration among three possible configurations of the TiZrCoSn alloy in FM phase. The GGA calculation shows the TiZrCoSn alloy at its equilibrium lattice constant 6.536 A is HM ferromagnet with an indirect band gap of 1.043 eV and a HM gap of 0.353 eV in the spin-down channel. The formation energy of −1.041 eV and the cohesion energy of 24.402 eV indicate the stability of the TiZrCoSn alloy. The Curie temperature of the TiZrCoSn alloy is higher than room temperature shows the TiZrCoSn alloy is suitable for spintronic applications. The band gap in the spin-down channel is formed by the bonding ( t 2g ) states and nonbonding ( t u ) states created from the d states hybridisation of transition metal atoms Ti, Zr and Co. The TiZrCoSn alloy has an integer total magnetic moment of 3 μ B / f .u . , satisfying the Slater-Pauling rule μ t = Z t − 18 . In addition, the HM character is kept as hydrostatic strain ranges from −10.3% to 8.4% and tetragonal strain ranges from −16.3% to 20.8%. The similar results are also obtained by GGA+U calculation.

[1]  Claudia Felser,et al.  Simple rules for the understanding of Heusler compounds , 2011 .

[2]  G. J. Snyder,et al.  Enhanced ideal strength of thermoelectric half-Heusler TiNiSn by sub-structure engineering , 2016 .

[3]  J. Moodera,et al.  Measuring the spin polarization of a metal with a superconducting point contact , 1998, Science.

[4]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[5]  E. Şaşıoğlu,et al.  Exchange interactions, spin waves, and Curie temperature in zincblende half-metallic sp-electron ferromagnets: the case of CaZ (Z = N, P, As, Sb) , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[6]  G. Fecher,et al.  Spintronics: a challenge for materials science and solid-state chemistry. , 2007, Angewandte Chemie.

[7]  A. I. Lichtenstein,et al.  Half-metallic ferromagnets: From band structure to many-body effects , 2007, 0711.0872.

[8]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[9]  K. Özdoğan,et al.  A proposal for an alternative class of spin filter materials: Hybridization-induced high-TC ferromagnetic semiconductors CoVXAl (X = Ti, Zr, Hf) , 2013 .

[10]  Kailun Yao,et al.  Large half-metallic gaps in the quaternary Heusler alloys CoFeCrZ (Z = Al, Si, Ga, Ge): A first-principles study , 2013 .

[11]  Guodong Liu,et al.  New quarternary half metallic material CoFeMnSi , 2009 .

[12]  N. Papanikolaou,et al.  Slater-Pauling behavior and origin of the half-metallicity of the full-Heusler alloys , 2002 .

[13]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[14]  Saadi Berri,et al.  First principles study of structural, electronic and magnetic properties of ZrFeTiAl, ZrFeTiSi, ZrFeTiGe and ZrNiTiAl , 2014 .

[15]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[16]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[17]  M. M. Raja,et al.  High spin polarization in CoFeMnGe equiatomic quaternary Heusler alloy , 2014, 1408.2408.

[18]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[19]  Hans‐Uwe Schuster,et al.  Optische Untersuchungen an farbigen Intermetallischen phasen , 1986 .

[20]  K.H.J. Buschow,et al.  New Class of Materials: Half-Metallic Ferromagnets , 1983 .

[21]  First-principle study on some new spin-gapless semiconductors: The Zr-based quaternary Heusler alloys , 2014, 1411.7570.

[22]  Equiatomic quaternary Heusler alloys: A material perspective for spintronic applications , 2016, 1608.03088.

[23]  G. Fecher,et al.  Quaternary Heusler Compounds without Inversion Symmetry: CoFe1+xTi1-xAl and CoMn1+xV1-xAl , 2011 .

[24]  P. H. Dederichs,et al.  Electronic structure and Slater–Pauling behaviour in half-metallic Heusler alloys calculated from first principles , 2006 .

[25]  L. Lagae,et al.  Technology and materials issues in semiconductor-based magnetoelectronics , 2002 .

[26]  K. Özdoğan,et al.  Generalized Slater-Pauling rule for the inverse Heusler compounds , 2013 .

[27]  K. Özdoğan,et al.  High-T C fully compensated ferrimagnetic semiconductors as spin-filter materials: the case of CrVXAl (X = Ti, Zr, Hf) Heusler compounds , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[28]  P. H. Dederichs,et al.  Introduction to half-metallic Heusler alloys: Electronic Structure and Magnetic Properties , 2005 .

[29]  Huan Xie,et al.  First-principles study of four quaternary Heusler alloys ZrMnVZ and ZrCoFeZ (Z=Si, Ge) , 2015, 1501.00542.

[30]  M. Moradi,et al.  Bulk and surface half-metallicity of CsS in CsCl structure: A density functional theory study , 2013 .

[31]  C. Felser,et al.  Slater-Pauling rule and Curie temperature of Co2-based Heusler compounds , 2006 .

[32]  Saadi Berri,et al.  Robust half-metallic ferromagnet of quaternary Heusler compounds ZrCoTiZ(Z = Si, Ge, Ga and Al) , 2014 .

[33]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[34]  K. Özdoğan,et al.  Slater-Pauling behavior in LiMgPdSn-type multifunctional quaternary Heusler materials: Half-metallicity, spin-gapless and magnetic semiconductors , 2013 .

[35]  Orbital magnetism in the half-metallic Heusler alloys , 2004, cond-mat/0407560.

[36]  Magnetism of solids resulting from spin polarization of p orbitals. , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[37]  G. Fecher,et al.  Electronic, structural, and magnetic properties of the half-metallic ferromagnetic quaternary Heusler compounds CoFeMnZ (Z = Al, Ga, Si, Ge) , 2011 .

[38]  P. Dederichs,et al.  Exchange interactions in diluted magnetic semiconductors , 2004 .

[39]  G. Fecher,et al.  Element-specific magnetic moments and spin-resolved density of states in CoFeMnZ (Z = Al, Ga; Si, Ge) , 2011 .

[40]  E. Şaşıoğlu,et al.  High TC half-metallic fully-compensated ferrimagnetic Heusler compounds , 2011 .