On the Kirchhoff index of some toroidal lattices
暂无分享,去创建一个
[1] L. Lovász. Combinatorial problems and exercises , 1979 .
[2] S. Salinas,et al. Theory of the phase transition in the layered hydrogen-bonded SnCl2· 2H2O crystal , 1974 .
[3] G. R. Allen. Dimer models for the antiferroelectric transition in copper formate tetrahydrate , 1974 .
[4] M. Randic,et al. Resistance distance , 1993 .
[5] Douglas J. Klein,et al. Molecular cyclicity and centricity of polycyclic graphs. I. Cyclicity based on resistance distances or reciprocal distances , 1994 .
[6] S. M. Bhattacharjee,et al. Dimer models on anisotropic lattices , 1989 .
[7] Peter E. John,et al. Spectra of toroidal graphs , 2009, Discret. Math..
[8] F. Y. Wu,et al. Spanning trees on graphs and lattices in d dimensions , 2000, cond-mat/0004341.
[9] Robert Sámal,et al. Cayley sum graphs and eigenvalues of (3, 6)-fullerenes , 2007, J. Comb. Theory, Ser. B.
[10] Bojan Mohar,et al. The Quasi-Wiener and the Kirchhoff Indices Coincide , 1996, J. Chem. Inf. Comput. Sci..
[11] V. Yegnanarayanan,et al. On product graphs , 2012 .