A signature scheme from the finite field isomorphism problem

Abstract In a recent paper the authors and their collaborators proposed a new hard problem, called the finite field isomorphism problem, and they used it to construct a fully homomorphic encryption scheme. In this paper, we investigate how one might build a digital signature scheme from this new problem. Intuitively, the hidden field isomorphism allows us to convert short vectors in the underlying lattice of one field into generic looking vectors in an isomorphic field.

[1]  Vadim Lyubashevsky,et al.  Lattice Signatures Without Trapdoors , 2012, IACR Cryptol. ePrint Arch..

[2]  Berk Sunar,et al.  Fully Homomorphic Encryption from the Finite Field Isomorphism Problem , 2017, Public Key Cryptography.

[3]  Gary L. Miller,et al.  Riemann's Hypothesis and tests for primality , 1975, STOC.

[4]  William Whyte,et al.  A signature scheme from Learning with Truncation , 2017, IACR Cryptol. ePrint Arch..

[5]  Phong Q. Nguyen,et al.  Learning a Parallelepiped: Cryptanalysis of GGH and NTRU Signatures , 2006, EUROCRYPT.

[6]  Oded Goldreich,et al.  Public-Key Cryptosystems from Lattice Reduction Problems , 1996, CRYPTO.

[7]  Ron Steinfeld,et al.  Making NTRU as Secure as Worst-Case Problems over Ideal Lattices , 2011, EUROCRYPT.

[8]  Phong Q. Nguyen,et al.  BKZ 2.0: Better Lattice Security Estimates , 2011, ASIACRYPT.

[9]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[10]  Léo Ducas,et al.  Lattice Signatures and Bimodal Gaussians , 2013, IACR Cryptol. ePrint Arch..

[11]  Nick Howgrave-Graham,et al.  A Hybrid Lattice-Reduction and Meet-in-the-Middle Attack Against NTRU , 2007, CRYPTO.

[12]  William Whyte,et al.  Transcript Secure Signatures Based on Modular Lattices , 2014, PQCrypto.

[13]  Vadim Lyubashevsky,et al.  Fiat-Shamir with Aborts: Applications to Lattice and Factoring-Based Signatures , 2009, ASIACRYPT.

[14]  Léo Ducas,et al.  Learning a Zonotope and More: Cryptanalysis of NTRUSign Countermeasures , 2012, ASIACRYPT.

[15]  William Whyte,et al.  NTRUSIGN: Digital Signatures Using the NTRU Lattice , 2003, CT-RSA.

[16]  Michael Rosen,et al.  A classical introduction to modern number theory , 1982, Graduate texts in mathematics.

[17]  Joseph H. Silverman,et al.  NTRU: A Ring-Based Public Key Cryptosystem , 1998, ANTS.

[18]  M. Rabin Probabilistic algorithm for testing primality , 1980 .