Chemometric Strategies for Spectroscopy-Based Food Authentication

In the last decades, spectroscopic techniques have played an increasingly crucial role in analytical chemistry, due to the numerous advantages they offer. Several of these techniques (e.g., Near-InfraRed—NIR—or Fourier Transform InfraRed—FT-IR—spectroscopy) are considered particularly valuable because, by means of suitable equipment, they enable a fast and non-destructive sample characterization. This aspect, together with the possibility of easily developing devices for on- and in-line applications, has recently favored the diffusion of such approaches especially in the context of foodstuff quality control. Nevertheless, the complex nature of the signal yielded by spectroscopy instrumentation (regardless of the spectral range investigated) inevitably calls for the use of multivariate chemometric strategies for its accurate assessment and interpretation. This review aims at providing a comprehensive overview of some of the chemometric tools most commonly exploited for spectroscopy-based foodstuff analysis and authentication. More in detail, three different scenarios will be surveyed here: data exploration, calibration and classification. The main methodologies suited to addressing each one of these different tasks will be outlined and examples illustrating their use will be provided alongside their description.