The classical caesium beam frequency standard: fifty years later

The caesium beam frequency standard using the separated oscillatory field technique proposed by Ramsey in 1950 has seen intensive development over the last fifty years. Its practical implementation as a primary time standard made possible the realization of the second with a precision better than that obtained by means of astronomical measurements and provided the basis for its redefinition in terms of atomic properties in 1967. This paper describes the basic principles underlying the operation of such atomic standards, reviews the progress made during the last fifty years since its invention, and provides an update on the state-of-the-art accuracy and frequency stability achieved today in this field.

[1]  Claude Cohen-Tannoudji,et al.  Étude du pompage optique dans le formalisme de la matrice densité , 1961 .

[2]  Robin P. Giffard,et al.  Frequency pulling by hyperfine σ transitions in cesium beam atomic frequency standards , 1991 .

[3]  J. Vanier,et al.  The quantum physics of atomic frequency standards , 1989 .

[4]  A. G. Mungall,et al.  NRC CsV Primary Clock Performance , 1977 .

[5]  A. Makdissi,et al.  Evaluation of the accuracy of the optically pumped caesium beam primary frequency standard of BNM-LPTF , 2001 .

[6]  Alfred Kastler,et al.  Quelques suggestions concernant la production optique et la détection optique d'une inégalité de population des niveaux de quantifigation spatiale des atomes. Application à l'expérience de Stern et Gerlach et à la résonance magnétique , 1950 .

[7]  Ilkka Tittonen,et al.  All-optical atomic clock based on coherent population trapping in 85 Rb , 2003 .

[8]  Shaoul Ezekiel,et al.  Observation of Ramsey Fringes Using a Stimulated, Resonance Raman Transition in a Sodium Atomic Beam , 1982 .

[9]  J. V. L. PARRY,et al.  An Atomic Standard of Frequency and Time Interval: A Cæsium Resonator , 1955, Nature.

[10]  A. Premoli,et al.  Pulling by Neighbouring Transitions and its Effects on the Performance of Caesium-Beam Frequency Standards , 1984 .

[11]  J. Shirley,et al.  Velocity distributions calculated from the Fourier transforms of Ramsey lineshapes , 1997 .

[13]  Leonard S. Cutler,et al.  Fifty years of commercial caesium clocks , 2005 .

[14]  A. De Marchi Rabi Pulling and Long-Term Stability in Cesium Beam Frequency Standards , 1987 .

[15]  Andreas Bauch,et al.  Performance of the PTB reconstructed primary clock CS1 and an estimate of its current uncertainty , 1998 .

[16]  R P Hudson,et al.  Metrology and Fundamental Constants , 1981 .

[17]  Shaoul Ezekiel,et al.  Ac Stark shifts in a two-zone Raman interaction , 1989 .

[18]  Ho Seong Lee,et al.  Toward a cesium frequency standard based on a continuous slow atomic beam: preliminary results , 2001, IEEE Trans. Instrum. Meas..

[19]  Y. Nakadan,et al.  A Squarewave F.M. Servo System with a Digital Signal Processing for Cesium Frequency Standards , 1982 .

[20]  J. Kitching,et al.  Microfabricated alkali atom vapor cells , 2004 .

[21]  Filippo Levi,et al.  Coherent population trapping in cesium: Dark lines and coherent microwave emission , 1998 .

[22]  André Clairon,et al.  Observation of Raman-Ramsey fringes with optical CPT pulses , 2005, IEEE Transactions on Instrumentation and Measurement.

[23]  Claude Cohen-Tannoudji,et al.  largissement et dplacement des raies de rsonance magntique causs par une excitation optique , 1961 .

[25]  Y. Nakadan,et al.  Recent Progress in Cs Beam Frequency Standards at the NRLM , 1985, IEEE Transactions on Instrumentation and Measurement.

[26]  G. Theobald,et al.  Frequency shifts in cesium beam clocks induced by microwave leakages , 1998, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[27]  Shaoul Ezekiel,et al.  Semiconductor laser excitation of Ramsey fringes by using a Raman transition in a cesium atomic beam , 1993 .

[28]  Ken Hagimoto,et al.  Accuracy evaluation of the optically pumped Cs frequency standard at NRLM , 1999, IEEE Trans. Instrum. Meas..

[29]  Robert E. Drullinger,et al.  Accuracy evaluation of the primary frequency standard NIST-7 , 2001 .

[30]  Ettore Majorana Atomi orientati in campo magnetico variabile , 1932 .

[31]  Norman F. Ramsey,et al.  A Molecular Beam Resonance Method with Separated Oscillating Fields , 1950 .

[32]  Jon H. Shirley,et al.  A new cavity configuration for cesium beam primary frequency standards , 1988 .

[33]  A. Siegert,et al.  Magnetic Resonance for Nonrotating Fields , 1940 .

[34]  I. Rabi,et al.  The Radiofrequency Spectra of Atoms Hyperfine Structure and Zeeman Effect in the Ground State of Li 6 , Li 7 , K 39 and K 41 , 1940 .

[35]  P. Cerez,et al.  Hyperfine Structure Separation of the Ground State of 87Rb Measured with an Optically Pumped Atomic Beam , 1972 .

[36]  A. Mccoubrey,et al.  Joseph Hodson Holloway 1929 - 1971 Twenty Years of Progress in Atomic Frequency Standards , 1972 .

[37]  A. G. Mungall,et al.  The New NRC 2.1 Metre Primary Cesium Beam Frequency Standard, Cs V , 1973 .

[38]  Michel Tetu,et al.  All-optical microwave frequency standard: a proposal , 1993 .

[40]  Giordano,et al.  State selection in a cesium beam by laser-diode optical pumping. , 1987, Physical review. A, General physics.

[41]  J. Picqué,et al.  A cesium beam atomic clock using laser optical pumping. Preliminary tests , 1980 .

[42]  E. Guyon,et al.  Convective instabilities in nematics caused by an elliptical shear , 1981 .

[43]  Y. H. Kim Helix-coil transitions of dilute polymers under a velocity gradient , 1981 .

[44]  V. Giordano,et al.  Analysis of the noise sources in an optically pumped cesium beam resonator , 1993 .

[45]  Andreas Bauch,et al.  Discussion of the uncertainty budget and of long term comparison of PTB's primary frequency standards CS1, CS2 and CSF1 , 2003 .

[46]  Mizuhiko Hosokawa,et al.  Accuracy evaluation of optically pumped primary frequency standard CRL-O1 , 2004 .

[47]  J. Terrien,et al.  NEWS FROM THE INTERNATIONAL BUREAU OF WEIGHTS AND MEASURES: International Cooperation in Radionuclid , 1966 .

[48]  Andreas Bauch,et al.  The PTB primary clock CS3: type B evaluation of its standard uncertainty , 1996 .

[50]  Claude Audoin,et al.  Frequency Offset Due to Spectral Impurities in Cesium-Beam Frequency Standards , 1978, IEEE Transactions on Instrumentation and Measurement.

[51]  Yoshikazu Saburi,et al.  Design of and Preliminary Results on a Cesium-Beam Standard at the Radio Research Laboratories , 1978, IEEE Transactions on Instrumentation and Measurement.

[52]  K. Nakagiri,et al.  Studies on the accurate evaluation of the RRL primary cesium beam frequency standard , 1987, IEEE Transactions on Instrumentation and Measurement.

[53]  C. Thomas,et al.  Impact of new clock technologies on the stability and accuracy of the International Atomic Time TAI , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[54]  Andreas Bauch,et al.  Frequency shifts in a cesium atomic clock due to Majorana transitions , 1993 .

[55]  Claude Audoin,et al.  The measurement of time , 2001 .

[56]  H. Carr,et al.  The Principles of Nuclear Magnetism , 1961 .

[57]  I. Rabi,et al.  A New Method of Measuring Nuclear Magnetic Moment , 1938 .

[58]  R. M. Garvey 4 Cesium Beam Frequency Standard with Microprocessor Control , 1982 .

[59]  G. D. Rovera,et al.  Rabi pedestal shifts as a diagnostic tool for primary frequency standards , 1994 .

[60]  W. Gerlāch,et al.  Uber die Richtungsquantelung im Magnetfeld , 1924 .

[61]  A G Mungall,et al.  Design, Construction, and Performance of the NRC CsVI Primary Cesium Clocks , 1981 .

[62]  Claude Audoin,et al.  Caesium Beam Frequency Standards: Classical and Optically Pumped , 1992 .

[63]  A. Makdissi,et al.  Phase and light shift determination in an optically pumped cesium beam frequency standard , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[64]  C. Audoin,et al.  Digital synchronous detector and frequency control loop for cesium beam frequency standard , 1990 .