Pathways disrupted in human ALS motor neurons identified through genetic correction of mutant SOD1.

[1]  Robert H. Brown,et al.  Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons. , 2014, Cell reports.

[2]  L. Petrucelli,et al.  Targeting RNA Foci in iPSC-Derived Motor Neurons from ALS Patients with a C9ORF72 Repeat Expansion , 2013, Science Translational Medicine.

[3]  Nipun A. Mistry,et al.  RNA Toxicity from the ALS/FTD C9ORF72 Expansion Is Mitigated by Antisense Intervention , 2013, Neuron.

[4]  Robert H. Brown,et al.  Amyotrophic lateral sclerosis: Problems and prospects , 2013, Annals of neurology.

[5]  E. Kremmer,et al.  The C9orf72 GGGGCC Repeat Is Translated into Aggregating Dipeptide-Repeat Proteins in FTLD/ALS , 2013, Science.

[6]  Wim Robberecht,et al.  The changing scene of amyotrophic lateral sclerosis , 2013, Nature Reviews Neuroscience.

[7]  Kevin F. Bieniek,et al.  Unconventional Translation of C9ORF72 GGGGCC Expansion Generates Insoluble Polypeptides Specific to c9FTD/ALS , 2013, Neuron.

[8]  J. Glass,et al.  Cellular toxicity of mutant SOD1 protein is linked to an easily soluble, non-aggregated form in vitro , 2013, Neurobiology of Disease.

[9]  M. Cudkowicz,et al.  Enhancing clinical trials in neurodegenerative disorders: lessons from amyotrophic lateral sclerosis. , 2012, Current opinion in neurology.

[10]  Kenny Q. Ye,et al.  An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.

[11]  H. Hioki,et al.  Drug Screening for ALS Using Patient-Specific Induced Pluripotent Stem Cells , 2012, Science Translational Medicine.

[12]  R. Takahashi,et al.  Amyotrophic Lateral Sclerosis Model Derived from Human Embryonic Stem Cells Overexpressing Mutant Superoxide Dismutase 1 , 2012, Stem cells translational medicine.

[13]  Pablo Cingolani,et al.  © 2012 Landes Bioscience. Do not distribute. , 2022 .

[14]  G. Daley,et al.  Mutant induced pluripotent stem cell lines recapitulate aspects of TDP-43 proteinopathies and reveal cell-specific vulnerability , 2012, Proceedings of the National Academy of Sciences.

[15]  Matthew C. Kiernan,et al.  Clinical diagnosis and management of amyotrophic lateral sclerosis , 2011, Nature Reviews Neurology.

[16]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[17]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[18]  Pico Caroni,et al.  Selective Neuronal Vulnerability in Neurodegenerative Diseases: from Stressor Thresholds to Degeneration , 2011, Neuron.

[19]  Hynek Wichterle,et al.  A functionally characterized test set of human induced pluripotent stem cells , 2011, Nature Biotechnology.

[20]  Joshua M. Korn,et al.  Discovery and genotyping of genome structural polymorphism by sequencing on a population scale , 2011, Nature Genetics.

[21]  Michael J. Ziller,et al.  Reference Maps of Human ES and iPS Cell Variation Enable High-Throughput Characterization of Pluripotent Cell Lines , 2011, Cell.

[22]  Feng Zhang,et al.  Selection-Free Zinc-Finger Nuclease Engineering by Context-Dependent Assembly (CoDA) , 2010, Nature Methods.

[23]  Jan Hellemans,et al.  Accurate and objective copy number profiling using real-time quantitative PCR. , 2010, Methods.

[24]  P. Caroni,et al.  A role for motoneuron subtype–selective ER stress in disease manifestations of FALS mice , 2009, Nature Neuroscience.

[25]  D. Brown,et al.  Neural KCNQ (Kv7) channels , 2009, British journal of pharmacology.

[26]  Chao Tang,et al.  Rationalizing translation attenuation in the network architecture of the unfolded protein response , 2008, Proceedings of the National Academy of Sciences.

[27]  F. Gage,et al.  Non-cell-autonomous effect of human SOD1 G37R astrocytes on motor neurons derived from human embryonic stem cells. , 2008, Cell stem cell.

[28]  K. Eggan,et al.  Human embryonic stem cell-derived motor neurons are sensitive to the toxic effect of glial cells carrying an ALS-causing mutation. , 2008, Cell stem cell.

[29]  Hynek Wichterle,et al.  Induced Pluripotent Stem Cells Generated from Patients with ALS Can Be Differentiated into Motor Neurons , 2008, Science.

[30]  Ronnie J Winfrey,et al.  Rapid "open-source" engineering of customized zinc-finger nucleases for highly efficient gene modification. , 2008, Molecular cell.

[31]  Xun Hu,et al.  TDP-43 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis , 2008, Science.

[32]  Junying Yuan,et al.  Superoxide dismutase 1 mutants related to amyotrophic lateral sclerosis induce endoplasmic stress in neuro2a cells , 2008, Journal of neurochemistry.

[33]  P. Walter,et al.  Signal integration in the endoplasmic reticulum unfolded protein response , 2007, Nature Reviews Molecular Cell Biology.

[34]  Robert H. Brown,et al.  Molecular biology of amyotrophic lateral sclerosis: insights from genetics , 2006, Nature Reviews Neuroscience.

[35]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Marjan S. Bolouri,et al.  Integrated Analysis of Protein Composition, Tissue Diversity, and Gene Regulation in Mouse Mitochondria , 2003, Cell.

[37]  J. Tainer,et al.  Insights into Lou Gehrig's disease from the structure and instability of the A4V mutant of human Cu,Zn superoxide dismutase. , 2002, Journal of molecular biology.

[38]  J. Rothstein,et al.  Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS) , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[39]  M. Gurney,et al.  Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. , 1994, Science.

[40]  J. Haines,et al.  Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis , 1993, Nature.

[41]  A. Hudson,et al.  Changes in sizes of cortical and lower motor neurons in amyotrophic lateral sclerosis. , 1991, Brain : a journal of neurology.

[42]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[43]  Kai Long,et al.  A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. , 2005, Science.

[44]  D. Mcilwain Nuclear and cell body size in spinal motor neurons. , 1991, Advances in neurology.