3D canopy modelling as a tool in remote-sensing research

This chapter reviews the way in which 3D plant and canopy models have been used in the field of remote sensing. The focus of the chapter is on remote sensing of crops at microwave and optical wavelengths, although other applications are discussed. A brief review of remote sensing of crops is presented, followed by an evaluation of the motivation for using various types of 3D models with remotesensing data. A discussion of current issues and areas requiring future work is provided.

[1]  Kamal Sarabandi,et al.  Electromagnetic scattering from grassland. I. A fully phase-coherent scattering model , 2000, IEEE Trans. Geosci. Remote. Sens..

[2]  Philip Lewis,et al.  Modelling the radiometric response of a dynamic, 3D structural model of Scots pine in the optical and microwave domains , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[3]  F. Baret,et al.  Radiative transfer sensitivity to the accuracy of canopy structure description. The case of a maize canopy , 1999 .

[4]  Rattan Lal,et al.  Carbon sequestration in soils , 1999 .

[5]  Yves Caraglio,et al.  Using SIR-C SAR data and the AMAP model for forest attributes retrieval and 3-D stand simulation , 2001 .

[6]  Fawwaz Ulaby,et al.  Microwave Dielectric Spectrum of Vegetation - Part II: Dual-Dispersion Model , 1987, IEEE Transactions on Geoscience and Remote Sensing.

[7]  S. Running,et al.  Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active , 1998 .

[8]  V. Demarez,et al.  Modeling radiative transfer in heterogeneous 3D vegetation canopies , 1995, Remote Sensing.

[9]  Philip Lewis,et al.  Geostatistical classification for remote sensing: an introduction , 2000 .

[10]  Philip Lewis,et al.  Modelling the radiometric response of a dynamic, 3D structural model of wheat in the optical and microwave domains , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[11]  W. Qin,et al.  3-D Scene Modeling of Semidesert Vegetation Cover and its Radiation Regime , 2000 .

[12]  Yuri Knyazikhin,et al.  Retrieval of canopy biophysical variables from bidirectional reflectance Using prior information to solve the ill-posed inverse problem , 2003 .

[13]  Mathias Disney,et al.  Biophysical parameter retrieval from forest and crop canopies in the optical and microwave domains using 3D models of canopy structure , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[14]  D. Luquet,et al.  Effect of the vegetation clumping on the BRDF of a semi-arid grassland: comparison of the SAIL model and ray tracing method applied to a 3D computerized vegetation canopy , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[15]  Jing M. Chen,et al.  Quantifying the effect of canopy architecture on optical measurements of leaf area index using two gap size analysis methods , 1995, IEEE Trans. Geosci. Remote. Sens..

[16]  Jean-Philippe Gastellu-Etchegorry,et al.  Modeling of the radiation regime and photosynthesis of a finite canopy using the DART model. Influence of canopy architecture assumptions and border effects , 2000 .

[17]  F. Baret,et al.  PROSPECT: A model of leaf optical properties spectra , 1990 .

[18]  Przemyslaw Prusinkiewicz,et al.  Modeling of spatial structure and development of plants: a review , 1998 .

[19]  Jing M. Chen,et al.  Canopy architecture and remote sensing of the fraction of photosynthetically active radiation absorbed by boreal conifer forests , 1996, IEEE Trans. Geosci. Remote. Sens..

[20]  Jitendra Behari,et al.  Microwave dielectric behavior of wet soils , 2005 .

[21]  Philip Lewis,et al.  3D modelling of forest canopy structure for remote sensing simulations in the optical and microwave domains , 2006 .

[22]  Philip Lewis Three-dimensional plant modelling for remote sensing simulation studies using the Botanical Plant Modelling System , 1999 .

[23]  Jean-Philippe Gastellu-Etchegorry,et al.  Sensitivity of Texture of High Resolution Images of Forest to Biophysical and Acquisition Parameters , 1998 .

[24]  F. Baret,et al.  Coupling canopy functioning and radiative transfer models for remote sensing data assimilation , 2001 .

[25]  K. Ranson,et al.  Predicting lidar measured forest vertical structure from multi-angle spectral data , 2006 .

[26]  Philip Lewis,et al.  Comparison of HYMAP/E-SAR data with models for optical reflectance and microwave scattering from vegetation canopies , 2002 .

[27]  G. Robertson,et al.  Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere , 2000, Science.

[28]  F. Ulaby,et al.  Microwave Dielectric Behavior of Wet Soil-Part II: Dielectric Mixing Models , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[29]  David L.B. Jupp,et al.  Spatial variance in directional remote sensing imagery‐recent developments and future perspectives , 2000 .

[30]  D S Kimes,et al.  Radiative transfer model for heterogeneous 3-D scenes. , 1982, Applied optics.

[31]  A. Marshak,et al.  Calculation of canopy bidirectional reflectance using the Monte Carlo method , 1988 .

[32]  Fawwaz T. Ulaby,et al.  Radar response of periodic vegetation canopies , 1994 .

[33]  A. Fung,et al.  Electromagnetic wave scattering from some vegetation samples , 1988 .

[34]  Adrian K. Fung,et al.  Effect of tree structure on X-band microwave signature of conifers , 1993, IEEE Trans. Geosci. Remote. Sens..

[35]  J. Privette,et al.  Inversion methods for physically‐based models , 2000 .

[36]  Philippe Martin,et al.  A Model of Light Scattering in Three-Dimensional Plant Canopies: a Monte Carlo Ray Tracing Approach , 2007 .

[37]  Jean-Philippe Gastellu-Etchegorry,et al.  Recovery of forest canopy characteristics through inversion of a complex 3D model , 2002 .

[38]  S. Gerstl,et al.  Nonlinear spectral mixing models for vegetative and soil surfaces , 1994 .

[39]  Nadine Gobron,et al.  Optical remote sensing of vegetation: Modeling, caveats, and algorithms , 1995 .

[40]  Kamal Sarabandi,et al.  Simulation of interferometric SAR response for characterizing the scattering phase center statistics of forest canopies , 2000, IEEE Trans. Geosci. Remote. Sens..

[41]  Richard K. Moore,et al.  Identification of major backscattering sources in trees and shrubs at 10 GHz , 1986 .

[42]  Guoqing Sun,et al.  A three-dimensional radar backscatter model of forest canopies , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[43]  Mathias Disney,et al.  Monte Carlo ray tracing in optical canopy reflectance modelling , 2000 .

[44]  F. Ulaby,et al.  Microwave Dielectric Behavior of Wet Soil-Part 1: Empirical Models and Experimental Observations , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[46]  F. Baret,et al.  Modeling Spectral and Bidirectional Soil Reflectance , 1992 .