Nanosensors for food quality and safety assessment

Food toxins are produced as defense tools by microorganisms that use nutrients for their growth. Microorganisms thus spoil food, taste and can infect humans, sometimes leading to death. Food adulteration and brand protection are also major issues in the food industry. Here we review the use of nanomaterials for sensing food quality. Nanosensors can detect pathogenic bacteria, food-contaminating toxins, adulterant, vitamins, dyes, fertilizers, pesticides, taste and smell. Food freshness can be monitored using time–temperature and oxygen indicators. Product authenticity and brand protection can be assessed using invisible nanobarcodes. Overall, nanosensors with unique properties are improving food security.

[1]  J. Marty,et al.  Enzyme-linked immunosorbent assay (ELISA) based on superparamagnetic nanoparticles for aflatoxin M1 detection. , 2008, Talanta.

[2]  S Vermeir,et al.  High-throughput microplate enzymatic assays for fast sugar and acid quantification in apple and tomato. , 2007, Journal of agricultural and food chemistry.

[3]  Hyun Seok Song,et al.  Single‐Carbon‐Atomic‐Resolution Detection of Odorant Molecules using a Human Olfactory Receptor‐based Bioelectronic Nose , 2009 .

[4]  Liguang Xu,et al.  Crown ether assembly of gold nanoparticles: melamine sensor. , 2011, Biosensors & bioelectronics.

[5]  S. K. Mehta,et al.  Nanoparticles to Sense Food Quality , 2016 .

[6]  Joseph Irudayaraj,et al.  Biofunctionalized magnetic nanoparticle integrated mid-infrared pathogen sensor for food matrixes. , 2009, Analytical chemistry.

[7]  Yun Xiang,et al.  Electrochemical sensor based on Prussian blue nanorods and gold nanochains for the determination of H2O2 , 2011 .

[8]  Alphus D. Wilson,et al.  Applications and Advances in Electronic-Nose Technologies , 2009, Sensors.

[9]  C. Natale,et al.  Novel oligopeptides based e-nose for food quality control: application to extra-virgin olive samples , 2014 .

[10]  Tai Hyun Park,et al.  Human taste receptor-functionalized field effect transistor as a human-like nanobioelectronic tongue. , 2013, Nano letters.

[11]  Chad A. Mirkin,et al.  Designing, fabricating, and imaging Raman hot spots , 2006, Proceedings of the National Academy of Sciences.

[12]  Tu-Chen Cheng,et al.  (CdSe)ZnS quantum dots and organophosphorus hydrolase bioconjugate as biosensors for detection of paraoxon. , 2005, The journal of physical chemistry. B.

[13]  K. Verstrepen,et al.  Glucose and sucrose: hazardous fast-food for industrial yeast? , 2004, Trends in biotechnology.

[14]  Matteo Ferroni,et al.  Synthesis and integration of tin oxide nanowires into an electronic nose , 2012 .

[15]  Yang Fan,et al.  Nonenzymatic hydrogen peroxide electrochemical sensor based on carbon-coated SnO2 supported Pt nanoparticles. , 2013, Colloids and surfaces. B, Biointerfaces.

[16]  F. Zhao,et al.  Direct electrochemistry of glucose oxidase entrapped in nano gold particles-ionic liquid-N,N-dimethylformamide composite film on glassy carbon electrode and glucose sensing. , 2007, Analytica chimica acta.

[17]  N. Pourmand,et al.  Ultrasensitive mycotoxin detection by STING sensors. , 2010, Biosensors & bioelectronics.

[18]  Feng Zhang,et al.  Electrochemical sensing platform for hydrogen peroxide using amorphous FeNiPt nanostructures , 2010 .

[19]  Hicham Fenniri,et al.  Nanomaterial-based barcodes. , 2015, Nanoscale.

[20]  S. Supothina,et al.  Preparation of tungsten oxide–tin oxide nanocomposites and their ethylene sensing characteristics , 2007 .

[21]  N. Kotov,et al.  Simple, rapid, sensitive, and versatile SWNT-paper sensor for environmental toxin detection competitive with ELISA. , 2009, Nano letters (Print).

[22]  Zheng Lou,et al.  Branch-like hierarchical heterostructure (α-Fe2O3/TiO2): a novel sensing material for trimethylamine gas sensor. , 2013, ACS applied materials & interfaces.

[23]  D. Nacapricha,et al.  Poly(vinyl alcohol) capped silver nanoparticles for antioxidant assay based on seed-mediated nanoparticle growth. , 2017, Talanta.

[24]  Giorgio Brandi,et al.  Direct detection of Listeria monocytogenes from milk by magnetic based DNA isolation and PCR , 2004 .

[25]  Stella Vallejos,et al.  Important considerations for effective gas sensors based on metal oxide nanoneedles films , 2012 .

[26]  Da-Jeng Yao,et al.  Magnetic bead-based DNA detection with multi-layers quantum dots labeling for rapid detection of Escherichia coli O157:H7. , 2008, Biosensors & bioelectronics.

[27]  Fei Xiao,et al.  Single-walled carbon nanotube-ionic liquid paste electrode for the sensitive voltammetric determination of folic acid , 2008 .

[28]  S. Mallakpour,et al.  Simultaneous Determination of Ascorbic Acid, Acetaminophen, and Tryptophan by Square Wave Voltammetry Using N-(3,4-Dihydroxyphenethyl)-3,5-Dinitrobenzamide-Modified Carbon Nanotubes Paste Electrode , 2012 .

[29]  C. Du,et al.  Localized surface plasmon resonance-based hybrid Au–Ag nanoparticles for detection of Staphylococcus aureus enterotoxin B , 2009 .

[30]  Fwu-Shan Sheu,et al.  Nonenzymatic glucose detection using multi-walled carbon nanotube electrodes , 2004 .

[31]  Nikolay I. Zheludev,et al.  Superimposed Nanostructured Diffraction Gratings as High Capacity Barcodes for Biological and Chemical Applications , 2008 .

[32]  Yunlei Zhou,et al.  Electrochemical behaviour of Sudan I at Fe3O4 nanoparticles modified glassy carbon electrode and its determination in food samples. , 2011, Food chemistry.

[33]  R. Leggiadro The Threat of Biological Terrorism: A Public Health and Infection Control Reality , 2000, Infection Control & Hospital Epidemiology.

[34]  Mohammad A. Khalilzadeh,et al.  A new strategy for determination of bisphenol A in the presence of Sudan I using a ZnO/CNTs/ionic liquid paste electrode in food samples. , 2014, Food chemistry.

[35]  Sha Zhang,et al.  Detection of aflatoxin M1 in milk by dynamic light scattering coupled with superparamagnetic beads and gold nanoprobes. , 2013, Journal of agricultural and food chemistry.

[36]  Wei‐De Zhang,et al.  Fabrication of SnO2–ZnO nanocomposite sensor for selective sensing of trimethylamine and the freshness of fishes , 2008 .

[37]  I. Klimant,et al.  Luminescent nanobeads for optical sensing and imaging of dissolved oxygen , 2008 .

[38]  Hassan Karimi-Maleh,et al.  High sensitive voltammetric sensor based on Pt/CNTs nanocomposite modified ionic liquid carbon paste electrode for determination of Sudan I in food samples. , 2013, Food chemistry.

[39]  Jordi Riu,et al.  Fast picomolar selective detection of bisphenol A in water using a carbon nanotube field effect transistor functionalized with estrogen receptor-alpha. , 2009, Biosensors & bioelectronics.

[40]  W. Mu,et al.  ZrO2/DNA-derivated polyion hybrid complex membrane for the determination of hydrogen peroxide in milk , 2008 .

[41]  Maurizio Prato,et al.  Highly sensitive electrochemiluminescent nanobiosensor for the detection of palytoxin. , 2012, ACS nano.

[42]  Tai Hyun Park,et al.  Nanovesicle-based bioelectronic nose platform mimicking human olfactory signal transduction. , 2012, Biosensors & bioelectronics.

[43]  M. L. Mena,et al.  Development of a tyrosinase biosensor based on gold nanoparticles-modified glassy carbon electrodes: Application to the measurement of a bioelectrochemical polyphenols index in wines , 2005 .

[44]  Younan Xia,et al.  Nanocrystal-based time-temperature indicators. , 2010, Chemistry.

[45]  Ajeet Kaushik,et al.  A nanostructured cerium oxide film-based immunosensor for mycotoxin detection , 2009, Nanotechnology.

[46]  Meital Reches,et al.  Peptide nanotube-modified electrodes for enzyme-biosensor applications. , 2005, Analytical chemistry.

[47]  Vipin K. Rastogi,et al.  Layer-by-Layer Films of Chitosan, Organophosphorus Hydrolase and Thioglycolic Acid-Capped CdSe Quantum Dots for the Detection of Paraoxon , 2003 .

[48]  Confronting China,et al.  Critical Issues , 1969 .

[49]  Shoufang Xu,et al.  One-pot synthesis of mesoporous structured ratiometric fluorescence molecularly imprinted sensor for highly sensitive detection of melamine from milk samples. , 2015, Biosensors & bioelectronics.

[50]  S. Timur,et al.  Examination of performance of glassy carbon paste electrode modified with gold nanoparticle and xanthine oxidase for xanthine and hypoxanthine detection. , 2007, Talanta.

[51]  Kangbing Wu,et al.  Multi-wall carbon nanotube-based electrochemical sensor for sensitive determination of Sudan I , 2008 .

[52]  Na Li,et al.  A dual amplification strategy for DNA detection combining bio-barcode assay and metal-enhanced fluorescence modality. , 2014, Chemical communications.

[53]  Chunyan Sun,et al.  Visual detection of melamine in raw milk by label-free silver nanoparticles , 2012 .

[54]  A. Naseri,et al.  Carbon Nanotube–Ionic Liquid (CNT–IL) Nanocamposite Modified Sol-Gel Derived Carbon-Ceramic Electrode for Simultaneous Determination of Sunset Yellow and Tartrazine in Food Samples , 2013, Food Analytical Methods.

[55]  Min-Gon Kim,et al.  High sensitivity detection of 16s rRNA using peptide nucleic acid probes and a surface plasmon resonance biosensor. , 2008, Analytica chimica acta.

[56]  Hua Zhang,et al.  Surface-Enhanced Raman Scattering of Ag–Au Nanodisk Heterodimers , 2012 .

[57]  N. Vasimalai,et al.  Picomolar melamine enhanced the fluorescence of gold nanoparticles: spectrofluorimetric determination of melamine in milk and infant formulas using functionalized triazole capped gold nanoparticles. , 2013, Biosensors & bioelectronics.

[58]  Deren Yang,et al.  Gas sensing behavior of polyvinylpyrrolidone-modified ZnO nanoparticles for trimethylamine , 2006 .

[59]  M. Figueras,et al.  Fast detection of Salmonella Infantis with carbon nanotube field effect transistors. , 2008, Biosensors & bioelectronics.

[60]  Eduard Llobet,et al.  Development of high sensitivity ethanol gas sensors based on Pt-doped SnO2 surfaces , 2004 .

[61]  Qingjiang Wang,et al.  Amperometric method for rapid detection of Escherichia coli by flow injection analysis using a bismuth nano-film modified glassy carbon electrode , 2007 .

[62]  Wanzhi. Wei,et al.  Fabrication of a copper nanoparticle/chitosan/carbon nanotube-modified glassy carbon electrode for electrochemical sensing of hydrogen peroxide and glucose , 2008 .

[63]  A. Afkhami,et al.  Novel potentiometric sensor for the determination of Cd2+ based on a new nano-composite , 2013 .

[64]  X. Doménech,et al.  Characterization of methylene blue/TiO2 hybrid thin films prepared by the liquid phase deposition (LPD) method: Application for fabrication of light-activated colorimetric oxygen indicators , 2007 .

[65]  H Morgan,et al.  High capacity tagging using nanostructured diffraction barcodes. , 2006, Optics express.

[66]  P. He,et al.  Electrochemical Detection of Sudan I Using a Multi-Walled Carbon Nanotube/Chitosan Composite Modified Glassy Carbon Electrode , 2013 .

[67]  Martin Moskovits,et al.  Tin-oxide-nanowire-based electronic nose using heterogeneous catalysis as a functionalization strategy. , 2010, ACS nano.

[68]  S. Gunasekaran,et al.  Gold nanoparticle-based thermal history indicator for monitoring low-temperature storage , 2015, Microchimica Acta.

[69]  F. Yu,et al.  Sensitive competitive direct enzyme-linked immunosorbent assay and gold nanoparticle immunochromatographic strip for detecting aflatoxin M1 in milk , 2011 .

[70]  P. Suppakul,et al.  Effects of Nanoparticle Concentration and Plasticizer Type on Colorimetric Behavior of Polydiacetylene/Silica Nanocomposite as Time-temperature Indicator , 2014 .

[71]  Frank Devlieghere,et al.  Developments in the active packaging of foods , 1999 .

[72]  Cuiping Han,et al.  Visual detection of melamine in infant formula at 0.1 ppm level based on silver nanoparticles. , 2010, The Analyst.

[73]  Shaoping Deng,et al.  A disposable amperometric enzyme immunosensor for rapid detection of Vibrio parahaemolyticus in food based on agarose/Nano-Au membrane and screen-printed electrode , 2007 .

[74]  Zhaoxia Wang,et al.  Electrochemical determination of Sudan I in food samples at graphene modified glassy carbon electrode based on the enhancement effect of sodium dodecyl sulphonate. , 2013, Food chemistry.

[75]  Mingde Chen,et al.  Ag@SnO2 core–shell material for use in fast-response ethanol sensor at room operating temperature , 2013 .

[76]  George C Schatz,et al.  Silver-based nanodisk codes. , 2010, ACS nano.

[77]  Wei Chen,et al.  Freestanding 3D mesoporous Co₃O₄@carbon foam nanostructures for ethanol gas sensing. , 2014, Analytical chemistry.

[78]  Xiuping Jiang,et al.  Rapid detection of Listeria monocytogenes by nanoparticle-based immunomagnetic separation and real-time PCR. , 2007, International journal of food microbiology.

[79]  P. Solanki,et al.  Antibody immobilized cysteamine functionalized-gold nanoparticles for aflatoxin detection , 2010 .

[80]  N. Miura,et al.  Highly regenerable and storageable all-chemical based PEG-immunosensor chip for SPR detection of ppt levels of fragrant compounds from beverage samples , 2008 .

[81]  C. Realini,et al.  Active and intelligent packaging systems for a modern society. , 2014, Meat science.

[82]  Ping Wang,et al.  Non-enzymatic hydrogen peroxide sensor based on a gold electrode modified with granular cuprous oxide nanowires , 2012, Microchimica Acta.

[83]  Mohammad A. Khalilzadeh,et al.  A novel nanosensor based on Pt:Co nanoalloy ionic liquid carbon paste electrode for voltammetric determination of vitamin B9 in food samples , 2014 .

[84]  F. Zhao,et al.  Voltammetric Determination of Folic Acid with a Multi-Walled Carbon Nanotube-Modified Gold Electrode , 2006 .

[85]  Dongxu Yang,et al.  Electrochemical reaction mechanism and determination of Sudan I at a multi wall carbon nanotubes modified glassy carbon electrode , 2010 .

[86]  T. Thundat,et al.  Critical issues in sensor science to aid food and water safety. , 2012, ACS nano.

[87]  Peng Yin,et al.  Submicrometre geometrically encoded fluorescent barcodes self-assembled from DNA. , 2012, Nature chemistry.

[88]  Ashutosh Kumar,et al.  Nanoscience and nanotechnologies in food industries: opportunities and research trends , 2014, Journal of Nanoparticle Research.

[89]  C. Banks,et al.  Silver nanoparticle assemblies supported on glassy-carbon electrodes for the electro-analytical detection of hydrogen peroxide , 2005, Analytical and bioanalytical chemistry.

[90]  N. Chaniotakis,et al.  Pesticide detection with a liposome-based nano-biosensor. , 2007, Biosensors & bioelectronics.

[91]  Yanbin Li,et al.  Quantum dot biolabeling coupled with immunomagnetic separation for detection of Escherichia coli O157:H7. , 2004, Analytical chemistry.

[92]  Hao Zhang,et al.  Controlled fabrication of fluorescent barcode nanorods. , 2010, ACS nano.

[93]  Yanbin Li,et al.  Simultaneous detection of Escherichia coli O157:H7 and Salmonella Typhimurium using quantum dots as fluorescence labels. , 2006, The Analyst.

[94]  Li Li,et al.  Visual detection of melamine in milk samples based on label-free and labeled gold nanoparticles. , 2011, Talanta.

[95]  M. Kiskinova,et al.  Single-nanobelt electronic nose: engineering and tests of the simplest analytical element. , 2010, ACS nano.

[96]  H. Karimi-Maleh,et al.  An Electrochemical Nanosensor for Simultaneous Voltammetric Determination of Ascorbic Acid and Sudan I in Food Samples , 2014, Food Analytical Methods.

[97]  Moonyong Lee,et al.  Fabrication of an electrochemical immunosensor with self-assembled peptide nanotubes , 2008 .

[98]  Chad A Mirkin,et al.  Nanodisk codes. , 2007, Nano letters.

[99]  B. Ganjipour,et al.  Novel 2,2'-[1,2-ethanediylbis(nitriloethylidyne)]-bis-hydroquinone double-wall carbon nanotube paste electrode for simultaneous determination of epinephrine, uric acid and folic acid. , 2008, Biosensors & bioelectronics.

[100]  T J Cieslak,et al.  Clinical recognition and management of patients exposed to biological warfare agents. , 1997, Clinics in laboratory medicine.

[101]  Changsheng Xie,et al.  Identification and pattern recognition analysis of Chinese liquors by doped nano ZnO gas sensor array , 2005 .

[102]  Tai Hyun Park,et al.  A peptide receptor-based bioelectronic nose for the real-time determination of seafood quality. , 2013, Biosensors & bioelectronics.

[103]  Steve Tung,et al.  A Label-free, Microfluidics and Interdigitated Array Microelectrode Based Impedance Biosensor in Combination with Nanoparticles Immunoseparation for Detection of Escherichia coli O157:H7 in Food Samples , 2007 .

[104]  Songqin Liu,et al.  Renewable phenol biosensor based on a tyrosinase-colloidal gold modified carbon paste electrode , 2003 .

[105]  S. Ai,et al.  Selective determination of melamine in milk samples using 3-mercapto-1-propanesulfonate-modified gold nanoparticles as colorimetric probe. , 2011, Talanta.

[106]  P. Jahrling,et al.  Clinical recognition and management of patients exposed to biological warfare agents. , 1997, JAMA.

[107]  Wolfgang J. Parak,et al.  Future Perspectives Towards the Use of Nanomaterials for Smart Food Packaging and Quality Control , 2015 .

[108]  Chang-Hoon Kwak,et al.  Vapor-phase growth of urchin-like Mg-doped ZnO nanowire networks and their application to highly sensitive and selective detection of ethanol , 2016 .

[109]  M. Bissell,et al.  A Rapid Bioassay for Single Bacterial Cell Quantitation Using Bioconjugated Nanoparticles , 2006 .

[110]  Dan Luo,et al.  Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes , 2005, Nature Biotechnology.

[111]  Minhyuk Yun,et al.  Electronic nose based on multipatterns of ZnO nanorods on a quartz resonator with remote electrodes. , 2013, ACS nano.

[112]  S. Mathur,et al.  Plasma-Modified SnO2 Nanowires for Enhanced Gas Sensing , 2010 .

[113]  Xiulan Sun,et al.  Preparation of gold-labeled antibody probe and its use in immunochromatography assay for detection of aflatoxin B1. , 2005, International journal of food microbiology.

[114]  Leon A Terry,et al.  The application of biosensors to fresh produce and the wider food industry. , 2005, Journal of agricultural and food chemistry.

[115]  Combining molecular imprinted nanoparticles with surface plasmon resonance nanosensor for chloramphenicol detection in honey , 2013 .

[116]  Tai Hyun Park,et al.  Bioelectronic tongue using heterodimeric human taste receptor for the discrimination of sweeteners with human-like performance. , 2014, ACS nano.

[117]  Tai Hyun Park,et al.  Bioelectronic nose with high sensitivity and selectivity using chemically functionalized carbon nanotube combined with human olfactory receptor. , 2012, Journal of biotechnology.

[118]  Carmine Ciofi,et al.  Electrical Characterization and Hydrogen Peroxide Sensing Properties of Gold/Nafion:Polypyrrole/MWCNTs Electrochemical Devices , 2013, Sensors.

[119]  Chao Zhang,et al.  Time--temperature indicator for perishable products based on kinetically programmable Ag overgrowth on Au nanorods. , 2013, ACS nano.

[120]  Changsheng Xie,et al.  Characterization of Chinese vinegars by electronic nose , 2006 .

[121]  Tai Hyun Park,et al.  A bioelectronic sensor based on canine olfactory nanovesicle-carbon nanotube hybrid structures for the fast assessment of food quality. , 2012, The Analyst.

[122]  M. Wang,et al.  Nano-composite ZrO2/Au film electrode for voltammetric detection of parathion , 2008 .

[123]  S. Yoon,et al.  A novel multi-walled carbon nanotube-based biosensor for glucose detection. , 2003, Biochemical and biophysical research communications.

[124]  Yuxiao Cheng,et al.  Combining biofunctional magnetic nanoparticles and ATP bioluminescence for rapid detection of Escherichia coli. , 2009, Talanta.

[125]  Tai Hyun Park,et al.  "Bioelectronic super-taster" device based on taste receptor-carbon nanotube hybrid structures. , 2011, Lab on a chip.

[126]  Ashutosh Kumar,et al.  Nanotechnology in agro-food: From field to plate , 2015 .

[127]  P. Solanki,et al.  Nanostructured zinc oxide platform for mycotoxin detection. , 2010, Bioelectrochemistry.

[128]  Rong-Hwa Shyu,et al.  Colloidal gold-based immunochromatographic assay for detection of botulinum neurotoxin type B. , 2004, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[129]  Ying Wang,et al.  Synthesis of Crystalline/Amorphous Core/Shell MoO3 Composites through a Controlled Dehydration Route and Their Enhanced Ethanol Sensing Properties , 2014 .

[130]  M. Bangar,et al.  Conducting polymer nanowire-based chemiresistive biosensor for the detection of bacterial spores. , 2010, Biosensors & bioelectronics.

[131]  Douglas R Call,et al.  Detection of bacterial pathogens in environmental samples using DNA microarrays. , 2003, Journal of microbiological methods.

[132]  Samrat Devaramani,et al.  Synthesis and characterization of cobalt nitroprusside nano particles: Application to sulfite sensing in food and water samples , 2012 .

[133]  L. Mattoso,et al.  Electrochemical detection of Salmonella using gold nanoparticles. , 2013, Biosensors & bioelectronics.

[134]  Xingyu Jiang,et al.  A highly sensitive, dual-readout assay based on gold nanoparticles for organophosphorus and carbamate pesticides. , 2012, Analytical chemistry.

[135]  Yan-Song Li,et al.  Colloidal gold probe-based immunochromatographic assay for the rapid detection of brevetoxins in fishery product samples. , 2009, Biosensors & bioelectronics.

[136]  Seunghun Hong,et al.  Discrimination of Umami Tastants Using Floating Electrode-Based Bioelectronic Tongue Mimicking Insect Taste Systems. , 2015, ACS nano.

[137]  Tai Hyun Park,et al.  Mimicking the human smell sensing mechanism with an artificial nose platform. , 2012, Biomaterials.

[138]  Daniela Manno,et al.  Poly(vinyl alcohol) capped silver nanoparticles as localized surface plasmon resonance-based hydrogen peroxide sensor , 2009 .

[139]  Ronald W Davis,et al.  Sensitive giant magnetoresistive-based immunoassay for multiplex mycotoxin detection. , 2010, Biosensors & bioelectronics.