Determinacy and Rewriting of Top-Down and MSO Tree Transformations

A query is determined by a view, if the result to the query can be reconstructed from the result of the view. We consider the problem of deciding for two given tree transformations, whether one is determined by the other. If the view transformation is induced by a tree transducer that may copy, then determinacy is undecidable, even for identity queries. For a large class of non-copying views, namely compositions of functional extended linear top-down tree transducers with regular look-ahead, we show that determinacy is decidable, where queries are given by deterministic top-down tree transducers with regular look-ahead or by MSO tree transducers. We also show that if a query is determined, then it can be rewritten into a query that works directly over the view and is in the same class as the given query. The proof relies on the decidability of equivalence for the two considered classes of queries, and on their closure under composition.

[1]  J. Engelfriet Top-down tree transducers with regular look-ahead , 1975 .

[2]  Max Dauchet,et al.  Bi-transductions de forêts , 1976, International Colloquium on Automata, Languages and Programming.

[3]  Joost Engelfriet,et al.  On Tree Transducers for Partial Functions , 1978, Inf. Process. Lett..

[4]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[5]  Joost Engelfriet,et al.  Tree transducers, L systems and two-way machines (Extended Abstract) , 1978, J. Comput. Syst. Sci..

[6]  Zoltán Ésik,et al.  Decidability results concerning tree transducers I , 1980, Acta Cybern..

[7]  Zoltán Ésik,et al.  Decidability results concerning tree transducers II , 1983, Acta Cybern..

[8]  Helmut Seidl,et al.  Single-Valuedness of Tree Transducers is Decidable in Polynomial Time , 1992, Theor. Comput. Sci..

[9]  Zoltán Fülöp,et al.  On Injectivity of Deterministic Top-Down Tree Transducers , 1993, Inf. Process. Lett..

[10]  Joost Engelfriet,et al.  Macro Tree Transducers, Attribute Grammars, and MSO Definable Tree Translations , 1999, Inf. Comput..

[11]  Joost Engelfriet,et al.  A Comparison of Tree Transductions Defined by Monadic Second Order Logic and by Attribute Grammars , 2000, J. Comput. Syst. Sci..

[12]  Grzegorz Rozenberg,et al.  Developments in Language Theory II , 2002 .

[13]  Joost Engelfriet,et al.  Macro Tree Translations of Linear Size Increase are MSO Definable , 2003, SIAM J. Comput..

[14]  Helmut Seidl,et al.  Macro forest transducers , 2004, Inf. Process. Lett..

[15]  Joost Engelfriet,et al.  Bottom-up and top-down tree transformations— a comparison , 1975, Mathematical systems theory.

[16]  Eitan M. Gurari,et al.  A note on finite-valued and finitely ambiguous transducers , 1983, Mathematical systems theory.

[17]  Victor Vianu,et al.  Views and queries: Determinacy and rewriting , 2010, TODS.

[18]  Joost Engelfriet,et al.  The equivalence problem for deterministic MSO tree transducers is decidable , 2005, Inf. Process. Lett..

[19]  Helmut Seidl,et al.  Equivalence of finite-valued tree transducers is decidable , 1994, Mathematical systems theory.

[20]  Andreas Maletti,et al.  Compositions of extended top-down tree transducers , 2008, Inf. Comput..

[21]  Joost Engelfriet,et al.  Extended Multi Bottom-Up Tree Transducers , 2008, Developments in Language Theory.

[22]  Mark Hopkins,et al.  The Power of Extended Top-Down Tree Transducers , 2009, SIAM J. Comput..

[23]  Joost Engelfriet,et al.  Deciding equivalence of top-down XML transformations in polynomial time , 2009, J. Comput. Syst. Sci..

[24]  Wojciech Rytter,et al.  On the Maximal Number of Cubic Runs in a String , 2010, LATA.

[25]  Alan Nash,et al.  Views and queries: Determinacy and rewriting , 2010, ACM Trans. Database Syst..

[26]  Foto N. Afrati,et al.  Determinacy and query rewriting for conjunctive queries and views , 2011, Theor. Comput. Sci..

[27]  Zoltán Fülöp,et al.  Weighted Extended Tree Transducers , 2011, Fundam. Informaticae.

[28]  Daniel Pasaila,et al.  Conjunctive queries determinacy and rewriting , 2011, ICDT '11.

[29]  Rajeev Alur,et al.  Streaming Tree Transducers , 2012, ICALP.

[30]  Bruno Courcelle,et al.  Graph Structure and Monadic Second-Order Logic: Overview , 2012 .

[31]  B. Groz,et al.  XML security views : queries, updates and schemas , 2012 .

[32]  Toru Fujiwara,et al.  Determinacy and Subsumption for Single-Valued Bottom-Up Tree Transducers , 2013, LATA.

[33]  Zoltán Fülöp,et al.  Composition Closure of ε-Free Linear Extended Top-Down Tree Transducers , 2013, Developments in Language Theory.

[34]  Sophie Tison,et al.  Static analysis of XML security views and query rewriting , 2014, Inf. Comput..