HiMap: Adaptive visualization of large-scale online social networks

Visualizing large-scale online social network is a challenging yet essential task. This paper presents HiMap, a system that visualizes it by clustered graph via hierarchical grouping and summarization. HiMap employs a novel adaptive data loading technique to accurately control the visual density of each graph view, and along with the optimized layout algorithm and the two kinds of edge bundling methods, to effectively avoid the visual clutter commonly found in previous social network visualization tools. HiMap also provides an integrated suite of interactions to allow the users to easily navigate the social map with smooth and coherent view transitions to keep their momentum. Finally, we confirm the effectiveness of HiMap algorithms through graph-travesal based evaluations.

[1]  Yehuda Koren,et al.  Graph Drawing by Stress Majorization , 2004, GD.

[2]  Guy Melançon,et al.  Multiscale visualization of small world networks , 2003, IEEE Symposium on Information Visualization 2003 (IEEE Cat. No.03TH8714).

[3]  Ioannis G. Tollis,et al.  Effective graph visualization via node grouping , 2001, IEEE Symposium on Information Visualization, 2001. INFOVIS 2001..

[4]  Kate Ehrlich,et al.  SmallBlue: People Mining for Expertise Search , 2008, IEEE MultiMedia.

[5]  Jarke J. van Wijk,et al.  Interactive Visualization of Small World Graphs , 2004, IEEE Symposium on Information Visualization.

[6]  Jean-Daniel Fekete,et al.  MatrixExplorer: a Dual-Representation System to Explore Social Networks , 2006, IEEE Transactions on Visualization and Computer Graphics.

[7]  Stephen Curial,et al.  Effectively visualizing large networks through sampling , 2005, VIS 05. IEEE Visualization, 2005..

[8]  Satoru Kawai,et al.  An Algorithm for Drawing General Undirected Graphs , 1989, Inf. Process. Lett..

[9]  Hong Zhou,et al.  Geometry-Based Edge Clustering for Graph Visualization , 2008, IEEE Transactions on Visualization and Computer Graphics.

[10]  Christos Faloutsos,et al.  Sampling from large graphs , 2006, KDD '06.

[11]  G. A. Miller THE PSYCHOLOGICAL REVIEW THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO: SOME LIMITS ON OUR CAPACITY FOR PROCESSING INFORMATION 1 , 1956 .

[12]  Michael Garland,et al.  On the Visualization of Social and other Scale-Free Networks , 2008, IEEE Transactions on Visualization and Computer Graphics.

[13]  M E J Newman,et al.  Fast algorithm for detecting community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Tina Eliassi-Rad,et al.  Visual Analysis of Large Heterogeneous Social Networks by Semantic and Structural Abstraction , 2006 .

[15]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[16]  Danah Boyd,et al.  Vizster: visualizing online social networks , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[17]  Jean-Daniel Fekete,et al.  NodeTrix: a Hybrid Visualization of Social Networks , 2007, IEEE Transactions on Visualization and Computer Graphics.

[18]  Peter Eades,et al.  A Fully Animated Interactive System for Clustering and Navigating Huge Graphs , 1998, GD.

[19]  Kozo Sugiyama,et al.  Layout Adjustment and the Mental Map , 1995, J. Vis. Lang. Comput..

[20]  Ivan Herman,et al.  Graph Visualization and Navigation in Information Visualization: A Survey , 2000, IEEE Trans. Vis. Comput. Graph..

[21]  Edward M. Reingold,et al.  Graph drawing by force‐directed placement , 1991, Softw. Pract. Exp..

[22]  Peter Eades,et al.  Multilevel Visualization of Clustered Graphs , 1996, GD.

[23]  G. A. Miller The magical number seven plus or minus two: some limits on our capacity for processing information. , 1956, Psychological review.

[24]  Peter Eades,et al.  A Heuristic for Graph Drawing , 1984 .

[25]  Martin Wattenberg,et al.  Centrality Based Visualization of Small World Graphs , 2008, Comput. Graph. Forum.

[26]  Ben Shneiderman,et al.  Balancing Systematic and Flexible Exploration of Social Networks , 2006, IEEE Transactions on Visualization and Computer Graphics.