Tangent Lines and Lipschitz Differentiability Spaces

Abstract We study the existence of tangent lines, i.e. subsets of the tangent space isometric to the real line, in tangent spaces of metric spaces.We first revisit the almost everywhere metric differentiability of Lipschitz continuous curves. We then show that any blow-up done at a point of metric differentiability and of density one for the domain of the curve gives a tangent line. Metric differentiability enjoys a Borel measurability property and this will permit us to use it in the framework of Lipschitz differentiability spaces.We show that any tangent space of a Lipschitz differentiability space contains at least n distinct tangent lines, obtained as the blow-up of n Lipschitz curves, where n is the dimension of the local measurable chart. Under additional assumptions on the space, such as curvature lower bounds, these n distinct tangent lines span an n-dimensional part of the tangent space.

[1]  N. Juillet Geometric Inequalities and Generalized Ricci Bounds in the Heisenberg Group , 2009 .

[2]  Stephen Semmes,et al.  Some Novel Types of Fractal Geometry , 2001 .

[3]  C. Villani,et al.  Ricci curvature for metric-measure spaces via optimal transport , 2004, math/0412127.

[4]  David Preiss,et al.  Geometry of measures in $\mathbf{R}^n$: Distribution, rectifiability, and densities , 1987 .

[5]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces. II , 2006 .

[6]  S. Keith Measurable differentiable structures and the Poincaré inequality , 2004 .

[7]  Andrea Schioppa On the relationship between derivations and measurable differentiable structures on metric measure spaces , 2012, 1205.3235.

[8]  T. Rajala Interpolated measures with bounded density in metric spaces satisfying the curvature-dimension conditions of Sturm , 2011, 1111.5526.

[9]  Shin-ichi Ohta On the measure contraction property of metric measure spaces , 2007 .

[10]  L. Ambrosio,et al.  Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds , 2012, 1209.5786.

[11]  T. Rajala,et al.  Failure of Topological Rigidity Results for the Measure Contraction Property , 2014, Potential Analysis.

[12]  Bernd Kirchheim Rectifiable metric spaces: local structure and regularity of the Hausdorff measure , 1994 .

[13]  J. Cheeger,et al.  Infinitesimal Structure of Differentiability Spaces, and Metric Differentiation , 2015, 1503.07348.

[14]  Guy C. David Tangents and Rectifiability of Ahlfors Regular Lipschitz Differentiability Spaces , 2014, 1405.2461.

[15]  T. Rajala,et al.  Euclidean spaces as weak tangents of infinitesimally Hilbertian metric measure spaces with Ricci curvature bounded below , 2013, 1304.5359.

[16]  Luigi Ambrosio,et al.  Rectifiable sets in metric and Banach spaces , 2000 .

[17]  Jeff Cheeger,et al.  Differentiability of Lipschitz Functions on Metric Measure Spaces , 1999 .

[18]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces , 2006 .

[19]  A. Mondino,et al.  Convergence of pointed non‐compact metric measure spaces and stability of Ricci curvature bounds and heat flows , 2013, 1311.4907.

[20]  Shin-ichi Ohta Splitting theorems for Finsler manifolds of nonnegative Ricci curvature , 2012, 1203.0079.

[21]  SOME NOVEL TYPES OF FRACTAL GEOMETRY (Oxford Mathematical Monographs) By STEPHEN SEMMES: 164 pp., £49.95, ISBN 0-19-850806-9 (Clarendon Press, Oxford, 2001). , 2002 .

[22]  A. Mondino,et al.  Structure theory of metric measure spaces with lower Ricci curvature bounds , 2014, Journal of the European Mathematical Society.

[23]  T. Rajala Local Poincaré inequalities from stable curvature conditions on metric spaces , 2011, 1107.4842.

[24]  L. Ambrosio,et al.  Metric measure spaces with Riemannian Ricci curvature bounded from below , 2011, 1109.0222.

[25]  J. Heinonen,et al.  Quasiconformal maps in metric spaces with controlled geometry , 1998 .

[26]  David Bate Structure of measures in Lipschitz differentiability spaces , 2012, 1208.1954.

[27]  W. Rudin Real and complex analysis , 1968 .

[28]  R. Korte Geometric Implications of the Poincaré Inequality , 2007 .

[29]  Marc Bourdon,et al.  Poincaré inequalities and quasiconformal structure on the boundary of some hyperbolic buildings , 1997 .

[30]  飛鳥 高津 Cédric Villani: Optimal Transport——Old and New, Grundlehren Math. Wiss., 338, Springer, 2009年,xxii+973ページ. , 2015 .

[31]  Derivations and Alberti representations , 2013, 1311.2439.

[32]  Nicola Gigli,et al.  The splitting theorem in non-smooth context , 2013, 1302.5555.

[33]  Characterizations of rectifiable metric measure spaces , 2014, 1409.4242.

[34]  Paolo Tilli,et al.  Topics on analysis in metric spaces , 2004 .

[35]  S. Semmes,et al.  Finding curves on general spaces through quantitative topology, with applications to Sobolev and Poincaré inequalities , 1996 .

[36]  L. Ambrosio,et al.  Riemannian Ricci curvature lower bounds in metric measure spaces with -finite measure , 2012, 1207.4924.

[37]  T. Laakso Ahlfors Q-regular spaces with arbitrary Q > 1 admitting weak Poincaré inequality , 2000 .

[38]  E. Donne Metric spaces with unique tangents , 2010, 1012.2210.

[39]  Karl-Theodor Sturm,et al.  On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces , 2013, 1303.4382.

[40]  B. Kleiner,et al.  DIFFERENTIABLE STRUCTURES ON METRIC MEASURE SPACES: A PRIMER , 2011, 1108.1324.