Computational Social Choice: The First Ten Years and Beyond

Computational social choice is a research area at the intersection of computer science, mathematics, and economics that is concerned with aggregation of preferences of multiple agents. Typical applications include voting, resource allocation, and fair division. This chapter highlights six representative research areas in contemporary computational social choice: restricted preference domains, voting equilibria and iterative voting, multiwinner voting, probabilistic social choice, random assignment, and computer-aided theorem proving.

[1]  Edith Elkind,et al.  Condorcet winning sets , 2015, Soc. Choice Welf..

[2]  Piotr Faliszewski,et al.  How Hard is Control in Single-Crossing Elections? , 2014, ECAI.

[3]  Salvador Barberà,et al.  How to choose a non-controversial list with k names , 2008, Soc. Choice Welf..

[4]  Piotr Faliszewski,et al.  Multiwinner Voting: A New Challenge for Social Choice Theory , 2017 .

[5]  Reshef Meir CHAPTER 4 Iterative Voting , 2017 .

[6]  Nicholas Mattei,et al.  Egalitarianism of Random Assignment Mechanisms , 2015, ArXiv.

[7]  Jay Sethuraman,et al.  House allocation with fractional endowments , 2011, Int. J. Game Theory.

[8]  Piotr Skowron,et al.  What Do We Elect Committees For? A Voting Committee Model for Multi-Winner Rules , 2015, IJCAI.

[9]  Nadja Betzler,et al.  On the Computation of Fully Proportional Representation , 2011, J. Artif. Intell. Res..

[10]  Craig Boutilier,et al.  Social Choice : From Consensus to Personalized Decision Making , 2011 .

[11]  Svetlana Obraztsova,et al.  Equilibria of Plurality Voting: Lazy and Truth-Biased Voters , 2014, SAGT.

[12]  Nicholas R. Jennings,et al.  Trembling Hand Equilibria of Plurality Voting , 2016, IJCAI.

[13]  Felix Brandt,et al.  Incentives for Participation and Abstention in Probabilistic Social Choice , 2015, AAMAS.

[14]  Felix Brandt,et al.  On the Incompatibility of Efficiency and Strategyproofness in Randomized Social Choice , 2014, AAAI.

[15]  Jaroslaw Byrka,et al.  PTAS for Minimax Approval Voting , 2014, WINE.

[16]  Omer Lev,et al.  Analysis of Equilibria in Iterative Voting Schemes , 2015, AAAI.

[17]  Haris Aziz,et al.  A Discrete and Bounded Envy-Free Cake Cutting Protocol for Any Number of Agents , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[18]  Piotr Faliszewski,et al.  Properties of multiwinner voting rules , 2014, Social Choice and Welfare.

[19]  Gerhard J. Woeginger,et al.  A characterization of the single-crossing domain , 2013, Soc. Choice Welf..

[20]  Jrg Rothe,et al.  Economics and Computation, An Introduction to Algorithmic Game Theory, Computational Social Choice, and Fair Division , 2015, Economics and Computation.

[21]  Daniela Sabán,et al.  The Complexity of Computing the Random Priority Allocation Matrix , 2015, Math. Oper. Res..

[22]  Piotr Faliszewski,et al.  Achieving fully proportional representation: Approximability results , 2013, Artif. Intell..

[23]  Haris Aziz,et al.  Justified representation in approval-based committee voting , 2014, Social Choice and Welfare.

[24]  Olivier Spanjaard,et al.  Kemeny Elections with Bounded Single-Peaked or Single-Crossing Width , 2013, IJCAI.

[25]  Gerhard J. Woeginger,et al.  Are there any nicely structured preference profiles nearby? , 2013, Math. Soc. Sci..

[26]  Felix Brandt,et al.  Universal pareto dominance and welfare for plausible utility functions , 2014, EC.

[27]  Felix Brandt,et al.  Majority Graphs of Assignment Problems and Properties of Popular Random Assignments , 2017, AAMAS.

[28]  Ulrich Endriss,et al.  UvA-DARE ( Digital Academic Repository ) First-Order Logic Formalisation of Impossibility Theorems in Preference Aggregation , 2013 .

[29]  Hervé Moulin,et al.  A New Solution to the Random Assignment Problem , 2001, J. Econ. Theory.

[30]  Michael A. Trick,et al.  Recognizing single-peaked preferences on a tree , 1989 .

[31]  Felix Brandt,et al.  Random Assignment with Optional Participation , 2017, AAMAS.

[32]  Ulrich Endriss,et al.  Voter response to iterated poll information , 2012, AAMAS.

[33]  Dominik Peters,et al.  Recognising Multidimensional Euclidean Preferences , 2016, AAAI.

[34]  Dominik Peters,et al.  Single-Peakedness and Total Unimodularity: New Polynomial-Time Algorithms for Multi-Winner Elections , 2016, AAAI.

[35]  Jean-François Laslier,et al.  Multiwinner approval rules as apportionment methods , 2016, AAAI.

[36]  Elliot Anshelevich,et al.  Randomized Social Choice Functions under Metric Preferences , 2015, IJCAI.

[37]  Joachim Gudmundsson,et al.  Computational Aspects of Multi-Winner Approval Voting , 2014, MPREF@AAAI.

[38]  BrandtFelix,et al.  Proving the Incompatibility of Efficiency and Strategyproofness via SMT Solving , 2018 .

[39]  Inon Zuckerman,et al.  Universal Voting Protocol Tweaks to Make Manipulation Hard , 2003, IJCAI.

[40]  Nicholas R. Jennings,et al.  On the Convergence of Iterative Voting: How Restrictive Should Restricted Dynamics Be? , 2015, AAAI.

[41]  John R. Chamberlin,et al.  Representative Deliberations and Representative Decisions: Proportional Representation and the Borda Rule , 1983, American Political Science Review.

[42]  Nicholas R. Jennings,et al.  Convergence to Equilibria in Plurality Voting , 2010, AAAI.

[43]  Haris Aziz,et al.  A Generalization of Probabilistic Serial to Randomized Social Choice , 2014, AAAI.

[44]  Eun Jeong Heo Probabilistic assignment problem with multi-unit demands: A generalization of the serial rule and its characterization , 2014 .

[45]  Edith Elkind,et al.  Proportional Justified Representation , 2016, AAAI.

[46]  Felix Brandt,et al.  The Computational Complexity of Random Serial Dictatorship , 2013, WINE.

[47]  H. Young Social Choice Scoring Functions , 1975 .

[48]  Telikepalli Kavitha,et al.  Popular mixed matchings , 2009, Theor. Comput. Sci..

[49]  Jay Sethuraman,et al.  A solution to the random assignment problem on the full preference domain , 2006, J. Econ. Theory.

[50]  Omer Lev,et al.  Convergence of Iterative Scoring Rules , 2016, J. Artif. Intell. Res..

[51]  Gábor Erdélyi,et al.  Computational Aspects of Nearly Single-Peaked Electorates , 2012, AAAI.

[52]  Svetlana Obraztsova,et al.  Complexity of Finding Equilibria of Plurality Voting Under Structured Preferences , 2016, AAMAS.

[53]  Julián Mestre,et al.  Parametrized algorithms for random serial dictatorship , 2014, Math. Soc. Sci..

[54]  Martin Lackner,et al.  Preferences Single-Peaked on a Circle , 2017, AAAI.

[55]  Edith Hemaspaandra,et al.  Bypassing Combinatorial Protections: Polynomial-Time Algorithms for Single-Peaked Electorates , 2010, AAAI.

[56]  Felix Brandt,et al.  Strategic Abstention Based on Preference Extensions: Positive Results and Computer-Generated Impossibilities , 2015, IJCAI.

[57]  M. Trick,et al.  The computational difficulty of manipulating an election , 1989 .

[58]  Felix Brandt,et al.  On the tradeoff between economic efficiency and strategy proofness in randomized social choice , 2013, AAMAS.

[59]  Piotr Faliszewski,et al.  What Do Multiwinner Voting Rules Do? An Experiment Over the Two-Dimensional Euclidean Domain , 2017, AAAI.

[60]  D. Black On the Rationale of Group Decision-making , 1948, Journal of Political Economy.

[61]  Toby Walsh,et al.  Lot-based voting rules , 2012, AAMAS.

[62]  Edith Elkind,et al.  Preferences Single-Peaked on Nice Trees , 2016, AAAI.

[63]  Vincent Conitzer,et al.  Stackelberg Voting Games: Computational Aspects and Paradoxes , 2010, AAAI.

[64]  Fangzhen Lin,et al.  Computer-Aided Proofs of Arrow's and Other Impossibility Theorems , 2008, AAAI.

[65]  Piotr Faliszewski,et al.  The Condorcet Principle for Multiwinner Elections: From Shortlisting to Proportionality , 2017, IJCAI.

[66]  Haris Aziz,et al.  Egalitarianism of Random Assignment Mechanisms: (Extended Abstract) , 2016, AAMAS.

[67]  Svetlana Obraztsova,et al.  Plurality Voting with Truth-Biased Agents , 2013, SAGT.

[68]  Fuhito Kojima,et al.  Random assignment of multiple indivisible objects , 2009, Math. Soc. Sci..

[69]  Edith Elkind,et al.  Multiwinner Elections Under Preferences That Are Single-Peaked on a Tree , 2013, IJCAI.

[70]  P. Faliszewski,et al.  Control and Bribery in Voting , 2016, Handbook of Computational Social Choice.

[71]  Jean-Claude Falmagne,et al.  A Polynomial Time Algorithm for Unidimensional Unfolding Representations , 1994, J. Algorithms.

[72]  Julie A. Adams,et al.  Strategyproof approximations of distance rationalizable voting rules , 2012, AAMAS.

[73]  Omer Lev,et al.  A local-dominance theory of voting equilibria , 2014, EC.

[74]  Felix Brandt,et al.  The Impossibility of Extending Random Dictatorship to Weak Preferences , 2015, ArXiv.

[75]  Thomas C. Ratliff Some startling inconsistencies when electing committees , 2003, Soc. Choice Welf..

[76]  Vincent Conitzer,et al.  Barriers to Manipulation in Voting , 2016, Handbook of Computational Social Choice.

[77]  Omer Lev,et al.  Empirical analysis of plurality election equilibria , 2013, AAMAS.

[78]  Piotr Faliszewski,et al.  Multiwinner analogues of the plurality rule: axiomatic and algorithmic perspectives , 2016, Social Choice and Welfare.

[79]  Edith Elkind,et al.  Structure in Dichotomous Preferences , 2015, IJCAI.

[80]  Felix Brandt,et al.  Optimal Bounds for the No-Show Paradox via SAT Solving , 2016, AAMAS.

[81]  Felix Brandt,et al.  Finding strategyproof social choice functions via SAT solving , 2014, AAMAS.

[82]  Vijay V. Vazirani,et al.  Allocation of Divisible Goods Under Lexicographic Preferences , 2012, FSTTCS.

[83]  M. Satterthwaite Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions , 1975 .

[84]  Paul R. Milgrom,et al.  Designing Random Allocation Mechanisms: Theory and Applications , 2013 .

[85]  Piotr Faliszewski,et al.  AI's War on Manipulation: Are We Winning? , 2010, AI Mag..

[86]  Piotr Faliszewski,et al.  The complexity of fully proportional representation for single-crossing electorates , 2013, Theor. Comput. Sci..

[87]  Svetlana Obraztsova,et al.  Strategic Voting with Incomplete Information , 2016, IJCAI.

[88]  Piotr Faliszewski,et al.  Using complexity to protect elections , 2010, Commun. ACM.

[89]  Yongjie Yang,et al.  The control complexity of r-Approval: From the single-peaked case to the general case , 2013, J. Comput. Syst. Sci..

[90]  Ariel D. Procaccia Can Approximation Circumvent Gibbard-Satterthwaite? , 2010, AAAI.

[91]  Edith Elkind,et al.  Equilibria of plurality voting with abstentions , 2010, EC '10.

[92]  Aranyak Mehta,et al.  Some results on approximating the minimax solution in approval voting , 2007, AAMAS '07.

[93]  Tobias Nipkow,et al.  Social Choice Theory in HOL Arrow and Gibbard-Satterthwaite , 2009 .

[94]  Haris Aziz,et al.  Maximal Recursive Rule: A New Social Decision Scheme , 2013, IJCAI.

[95]  F. Brandt,et al.  Computational Social Choice: Prospects and Challenges , 2011, FET.

[96]  Haris Aziz,et al.  Cake Cutting Algorithms for Piecewise Constant and Piecewise Uniform Valuations , 2013, WINE.

[97]  Ariel D. Procaccia,et al.  On the complexity of achieving proportional representation , 2008, Soc. Choice Welf..

[98]  Eun Jeong Heo,et al.  Probabilistic Assignment of Objects: Characterizing the Serial Rule , 2011, J. Econ. Theory.

[99]  Ariel D. Procaccia,et al.  Subset Selection via Implicit Utilitarian Voting , 2016, IJCAI.

[100]  Piotr Faliszewski,et al.  Committee Scoring Rules: Axiomatic Classification and Hierarchy , 2016, IJCAI.

[101]  Özgür Yilmaz,et al.  Random assignment under weak preferences , 2009, Games Econ. Behav..

[102]  Felix Brandt,et al.  Voting with Ties: Strong Impossibilities via SAT Solving , 2018, AAMAS.

[103]  A. Gibbard Manipulation of Voting Schemes: A General Result , 1973 .

[104]  Mark C. Wilson,et al.  Best Reply Dynamics for Scoring Rules , 2012, ECAI.

[105]  Sven Seuken,et al.  An axiomatic approach to characterizing and relaxing strategyproofness of one-sided matching mechanisms , 2014, EC.

[106]  Lirong Xia,et al.  Ex post Efficiency of Random Assignments , 2015, AAMAS.

[107]  Piotr Faliszewski,et al.  The complexity of manipulative attacks in nearly single-peaked electorates , 2011, TARK XIII.

[108]  William V. Gehrlein,et al.  The Condorcet criterion and committee selection , 1985 .

[109]  Felix Brandt,et al.  On Popular Random Assignments , 2013, SAGT.

[110]  M. Utku Ünver,et al.  Two axiomatic approaches to the probabilistic serial mechanism , 2014 .

[111]  Felix Brandt,et al.  Rolling the Dice : Recent Results in Probabilistic Social Choice , 2017 .

[112]  Haris Aziz,et al.  Impossibilities for probabilistic assignment , 2017, Soc. Choice Welf..

[113]  Olivier Spanjaard,et al.  Bounded Single-Peaked Width and Proportional Representation , 2012, ECAI.

[114]  Anna Bogomolnaia,et al.  Random assignment: Redefining the serial rule , 2015, J. Econ. Theory.

[115]  Guillaume Haeringer,et al.  A characterization of the single-peaked domain , 2011, Soc. Choice Welf..

[116]  M. Utku Ünver,et al.  A theory of school‐choice lotteries , 2015 .

[117]  Vincent Conitzer Eliciting single-peaked preferences using comparison queries , 2007, AAMAS '07.

[118]  Rafael Pass,et al.  Approximately Strategy-Proof Voting , 2011, IJCAI.

[119]  Edith Hemaspaandra,et al.  The complexity of Kemeny elections , 2005, Theor. Comput. Sci..

[120]  Tobias Nipkow,et al.  Social Choice Theory in HOL , 2009, Journal of Automated Reasoning.

[121]  H. Moulin On strategy-proofness and single peakedness , 1980 .

[122]  Toby Walsh,et al.  Restricted Manipulation in Iterative Voting: Condorcet Efficiency and Borda Score , 2013, ADT.

[123]  Piotr Faliszewski,et al.  Axiomatic Characterization of Committee Scoring Rules , 2016, J. Econ. Theory.

[124]  Piotr Faliszewski,et al.  The shield that never was: Societies with single-peaked preferences are more open to manipulation and control , 2011, Inf. Comput..

[125]  Dominik Peters,et al.  Single-Peakedness and Total Unimodularity: Efficiently Solve Voting Problems Without Even Trying , 2016, ArXiv.

[126]  Svetlana Obraztsova,et al.  On the Complexity of Voting Manipulation under Randomized Tie-Breaking , 2011, IJCAI.

[127]  Dominik Peters,et al.  CHAPTER 13 Computer-aided Methods for Social Choice Theory , 2017 .

[128]  Kate Larson,et al.  Investigating the Characteristics of One-Sided Matching Mechanisms: (Extended Abstract) , 2016, AAMAS.

[129]  Piotr Faliszewski,et al.  Finding a collective set of items: From proportional multirepresentation to group recommendation , 2014, Artif. Intell..

[130]  Piotr Faliszewski,et al.  A Richer Understanding of the Complexity of Election Systems , 2006, Fundamental Problems in Computing.

[131]  Yann Chevaleyre,et al.  A Short Introduction to Computational Social Choice , 2007, SOFSEM.

[132]  Vincent Conitzer,et al.  Making decisions based on the preferences of multiple agents , 2010, CACM.

[133]  Vincent Conitzer,et al.  Handbook of Computational Social Choice , 2016 .

[134]  Felix Brandt,et al.  Proving the Incompatibility of Efficiency and Strategyproofness via SMT Solving , 2016, IJCAI.

[135]  Toby Walsh,et al.  Manipulating the Probabilistic Serial Rule , 2015, AAMAS.

[136]  Omer Lev,et al.  Beyond Plurality: Truth-Bias in Binary Scoring Rules , 2015, ADT.

[137]  Felix Brandt,et al.  Consistent Probabilistic Social Choice , 2015, ArXiv.

[138]  Jie Zhang,et al.  Social Welfare in One-Sided Matchings: Random Priority and Beyond , 2014, SAGT.

[139]  K. Arrow,et al.  Social Choice and Individual Values , 1951 .