Hybrid ion mobility and mass spectrometry as a separation tool.

[1]  T. Covey,et al.  Differential mobility spectrometry/mass spectrometry history, theory, design optimization, simulations, and applications. , 2016, Mass spectrometry reviews.

[2]  Melvin A. Park,et al.  Microheterogeneity within conformational states of ubiquitin revealed by high resolution trapped ion mobility spectrometry. , 2015, The Analyst.

[3]  Christopher J. Hogan,et al.  Gas molecule scattering & ion mobility measurements for organic macro-ions in He versus N2 environments. , 2015, Physical chemistry chemical physics : PCCP.

[4]  Kent J. Griffith,et al.  Selected overtone mobility spectrometry. , 2015, Analytical chemistry.

[5]  Melvin A. Park,et al.  Targeted high-resolution ion mobility separation coupled to ultrahigh-resolution mass spectrometry of endocrine disruptors in complex mixtures. , 2015, Analytical chemistry.

[6]  Kyle L. Fort,et al.  From solution to gas phase: the implications of intramolecular interactions on the evaporative dynamics of substance P during electrospray ionization. , 2015, The journal of physical chemistry. B.

[7]  D. Clemmer,et al.  An IMS-IMS threshold method for semi-quantitative determination of activation barriers: Interconversion of proline cis↔trans forms in triply protonated bradykinin. , 2015, International journal of mass spectrometry.

[8]  César Barrios-Collado,et al.  Numerical algorithm for the accurate evaluation of ion beams in transversal modulation ion mobility spectrometry: Understanding realistic geometries , 2015 .

[9]  G. Vidal-de-Miguel,et al.  Transversal modulation ion mobility spectrometry (IMS) coupled with mass spectrometry (MS): exploring the IMS-IMS-MS possibilities of the instrument. , 2015, Analytical chemistry.

[10]  Yehia M. Ibrahim,et al.  Rectangular Ion Funnel: A New Ion Funnel Interface for Structures for Lossless Ion Manipulations , 2014, Analytical chemistry.

[11]  A. Shvartsburg Ultrahigh-resolution differential ion mobility separations of conformers for proteins above 10 kDa: onset of dipole alignment? , 2014, Analytical chemistry.

[12]  Yehia M. Ibrahim,et al.  Simulation of Electric Potentials and Ion Motion in Planar Electrode Structures for Lossless Ion Manipulations (SLIM) , 2014, Journal of The American Society for Mass Spectrometry.

[13]  Yehia M. Ibrahim,et al.  Mobility-Resolved Ion Selection in Uniform Drift Field Ion Mobility Spectrometry/Mass Spectrometry: Dynamic Switching in Structures for Lossless Ion Manipulations , 2014, Analytical Chemistry.

[14]  Liuqing Shi,et al.  Characterizing intermediates along the transition from polyproline I to polyproline II using ion mobility spectrometry-mass spectrometry. , 2014, Journal of the American Chemical Society.

[15]  Yehia M. Ibrahim,et al.  Experimental Evaluation and Optimization of Structures for Lossless Ion Manipulations for Ion Mobility Spectrometry with Time-of-Flight Mass Spectrometry , 2014, Analytical chemistry.

[16]  Hossein Maleki,et al.  A new ion mobility-linear ion trap instrument for complex mixture analysis. , 2014, Analytical chemistry.

[17]  A. Shvartsburg,et al.  Effective ion mobility calculations for macromolecules by scattering on electron clouds. , 2014, The journal of physical chemistry. A.

[18]  S. Trimpin,et al.  Characterizing synthetic polymers and additives using new ionization methods for mass spectrometry. , 2014, Rapid communications in mass spectrometry : RCM.

[19]  J. Mora,et al.  Electrospray Ionization Mechanisms for Large Polyethylene Glycol Chains Studied Through Tandem Ion Mobility Spectrometry , 2014, Journal of The American Society for Mass Spectrometry.

[20]  Melvin A. Park,et al.  High resolution trapped ion mobility spectrometery of peptides. , 2014, Analytical chemistry.

[21]  Kyle L. Fort,et al.  Evolution of Hydrogen-Bond Networks in Protonated Water Clusters H(+)(H2O)n (n = 1 to 120) Studied by Cryogenic Ion Mobility-Mass Spectrometry. , 2014, The journal of physical chemistry letters.

[22]  Yehia M. Ibrahim,et al.  Improving Ion Mobility Measurement Sensitivity by Utilizing Helium in an Ion Funnel Trap , 2014, Analytical chemistry.

[23]  D. Clemmer,et al.  Solution Dependence of the Collisional Activation of Ubiquitin [M + 7H]7+ Ions , 2014, Journal of The American Society for Mass Spectrometry.

[24]  Melvin A. Park,et al.  Ion dynamics in a trapped ion mobility spectrometer. , 2014, The Analyst.

[25]  D. Clemmer,et al.  Evidence for Two New Solution States of Ubiquitin by IMS–MS Analysis , 2014, The journal of physical chemistry. B.

[26]  Carol V. Robinson,et al.  Ion mobility-mass spectrometry of a rotary ATPase reveals ATP-induced reduction in conformational flexibility. , 2014, Nature chemistry.

[27]  V. Wysocki,et al.  Surface induced dissociation: dissecting noncovalent protein complexes in the gas phase. , 2014, Accounts of chemical research.

[28]  Yue Xuan,et al.  Studying Ultra-Complex Crude Oil Mixtures by Using High-Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) Coupled to an Electrospray Ionisation-LTQ-Orbitrap Mass Spectrometer , 2014, European journal of mass spectrometry.

[29]  Melvin A. Park,et al.  High-Field Asymmetric-Waveform Ion Mobility Spectrometry and Electron Detachment Dissociation of Isobaric Mixtures of Glycosaminoglycans , 2014, Journal of The American Society for Mass Spectrometry.

[30]  Cody R. Goodwin,et al.  Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer , 2014, Analytical chemistry.

[31]  Stefan Tenzer,et al.  Drift time-specific collision energies enable deep-coverage data-independent acquisition proteomics , 2013, Nature Methods.

[32]  Kyle L. Fort,et al.  From solution to the gas phase: stepwise dehydration and kinetic trapping of substance P reveals the origin of peptide conformations. , 2013, Journal of the American Chemical Society.

[33]  Lingjun Li,et al.  Site-Specific Characterization of d-Amino Acid Containing Peptide Epimers by Ion Mobility Spectrometry , 2013, Analytical chemistry.

[34]  M. Bowers,et al.  A novel projection approximation algorithm for the fast and accurate computation of molecular collision cross sections (IV). Application to polypeptides , 2013 .

[35]  Michael A. Ewing,et al.  Gridless overtone mobility spectrometry. , 2013, Analytical chemistry.

[36]  Kyle L. Fort,et al.  The periodic focusing ion funnel: theory, design, and experimental characterization by high-resolution ion mobility-mass spectrometry. , 2013, Analytical chemistry.

[37]  Christopher J. Hogan,et al.  The Collision Cross Sections of Iodide Salt Cluster Ions in Air via Differential Mobility Analysis-Mass Spectrometry , 2013, Journal of The American Society for Mass Spectrometry.

[38]  Michael A. Ewing,et al.  Ion trapping for ion mobility spectrometry measurements in a cyclical drift tube. , 2013, Analytical chemistry.

[39]  M. Bowers,et al.  A novel projection approximation algorithm for the fast and accurate computation of molecular collision cross sections (II). Model parameterization and definition of empirical shape factors for proteins , 2013 .

[40]  P. Vouros,et al.  Extending the Dynamic Range of the Ion Trap by Differential Mobility Filtration , 2013, Journal of The American Society for Mass Spectrometry.

[41]  L. Gatto,et al.  Effects of traveling wave ion mobility separation on data independent acquisition in proteomics studies. , 2013, Journal of proteome research.

[42]  S. Valentine,et al.  Overtone Mobility Spectrometry: Part 5. Simulations and Analytical Expressions Describing Overtone Limits , 2013, Journal of The American Society for Mass Spectrometry.

[43]  S. Cristoni,et al.  Differential mobility analysis-mass spectrometry coupled to XCMS algorithm as a novel analytical platform for metabolic profiling , 2013, Metabolomics.

[44]  K. Servage,et al.  Cryogenic ion mobility-mass spectrometry captures hydrated ions produced during electrospray ionization. , 2013, The journal of physical chemistry. A.

[45]  K. Barylyuk,et al.  Ion mobility spectrometry coupled to laser-induced fluorescence. , 2013, Analytical chemistry.

[46]  M. Bowers,et al.  A novel projection approximation algorithm for the fast and accurate computation of molecular collision cross sections (III): Application to supramolecular coordination-driven assemblies with complex shapes , 2012 .

[47]  B. Lavine,et al.  Ion mobility-mass spectrometry analysis of serum N-linked glycans from esophageal adenocarcinoma phenotypes. , 2012, Journal of proteome research.

[48]  G. Vidal-de-Miguel,et al.  Transversal Modulation Ion Mobility Spectrometry (TM-IMS), a new mobility filter overcoming turbulence related limitations. , 2012, Analytical chemistry.

[49]  C. Robinson,et al.  Ion mobility mass spectrometry of peptide ions: effects of drift gas and calibration strategies. , 2012, Analytical chemistry.

[50]  M. Eberlin,et al.  Protomers: formation, separation and characterization via travelling wave ion mobility mass spectrometry. , 2012, Journal of mass spectrometry : JMS.

[51]  Ingrid Pettersson,et al.  Traveling-wave ion mobility mass spectrometry of protein complexes: accurate calibrated collision cross-sections of human insulin oligomers. , 2012, Rapid communications in mass spectrometry : RCM.

[52]  David H Russell,et al.  Ion mobility-mass spectrometry (IM-MS) for top-down proteomics: increased dynamic range affords increased sequence coverage. , 2012, Analytical chemistry.

[53]  S. Valentine,et al.  Conformation types of ubiquitin [M+8H]8+ Ions from water:methanol solutions: evidence for the N and A States in aqueous solution. , 2012, The journal of physical chemistry. B.

[54]  Kyle L. Fort,et al.  Damping factor links periodic focusing and uniform field ion mobility for accurate determination of collision cross sections. , 2012, Analytical chemistry.

[55]  Tawnya G. Flick,et al.  How Hot are Your Ions in TWAVE Ion Mobility Spectrometry? , 2012, Journal of The American Society for Mass Spectrometry.

[56]  Y. Mechref,et al.  Delineating diseases by IMS-MS profiling of serum N-linked glycans. , 2012, Journal of proteome research.

[57]  F. Fernandez-Lima,et al.  Note: Integration of trapped ion mobility spectrometry with mass spectrometry. , 2011, The Review of scientific instruments.

[58]  T. Wyttenbach,et al.  A novel projection approximation algorithm for the fast and accurate computation of molecular collision cross sections (I). Method , 2011 .

[59]  Carol V. Robinson,et al.  Mass Spectrometry of Intact V-Type ATPases Reveals Bound Lipids and the Effects of Nucleotide Binding , 2011, Science.

[60]  T. Wyttenbach,et al.  Structural stability from solution to the gas phase: native solution structure of ubiquitin survives analysis in a solvent-free ion mobility-mass spectrometry environment. , 2011, The journal of physical chemistry. B.

[61]  David H Russell,et al.  Number of solution states of bradykinin from ion mobility and mass spectrometry measurements. , 2011, Journal of the American Chemical Society.

[62]  S. Valentine,et al.  Overtone Mobility Spectrometry: Part 4. OMS-OMS Analyses of Complex Mixtures , 2011, Journal of the American Society for Mass Spectrometry.

[63]  Scott M. Grayson,et al.  Architectural Differentiation of Linear and Cyclic Polymeric Isomers by Ion Mobility Spectrometry-Mass Spectrometry , 2011 .

[64]  J. Reilly,et al.  An Ion Mobility/Ion Trap/Photodissociation Instrument for Characterization of Ion Structure , 2011, Journal of the American Society for Mass Spectrometry.

[65]  M. Morris,et al.  ETD in a Traveling Wave Ion Guide at Tuned Z-Spray Ion Source Conditions Allows for Site-Specific Hydrogen/Deuterium Exchange Measurements , 2011, Journal of the American Society for Mass Spectrometry.

[66]  T. Rizzo,et al.  Spectroscopy of mobility-selected biomolecular ions. , 2011, Faraday discussions.

[67]  E. De Pauw,et al.  Effective temperature of ions in traveling wave ion mobility spectrometry. , 2011, Analytical chemistry.

[68]  Melvin A. Park,et al.  Gas-phase separation using a trapped ion mobility spectrometer , 2011, International journal for ion mobility spectrometry : official publication of the International Society for Ion Mobility Spectrometry.

[69]  I. Campuzano,et al.  Enhancements in travelling wave ion mobility resolution. , 2011, Rapid communications in mass spectrometry : RCM.

[70]  D. Russell,et al.  Gas-phase ion dynamics in a periodic-focusing DC ion guide (Part II): Discrete transport modes , 2011 .

[71]  Chris Hughes,et al.  Using ion mobility data to improve peptide identification: intrinsic amino acid size parameters. , 2011, Journal of proteome research.

[72]  Jody C. May,et al.  A Mass-Selective Variable-Temperature Drift Tube Ion Mobility-Mass Spectrometer for Temperature Dependent Ion Mobility Studies , 2011, Journal of the American Society for Mass Spectrometry.

[73]  D. Russell,et al.  Increased ion transmission in IMS: A high resolution, periodic-focusing DC ion guide ion mobility spectrometer , 2011 .

[74]  S. Valentine,et al.  Complexation of Amino Compounds by 18C6 Improves Selectivity by IMS-IMS-MS: Application to Petroleum Characterization , 2011, Journal of the American Society for Mass Spectrometry.

[75]  S. Valentine,et al.  Overtone Mobility Spectrometry: Part 3. On the Origin of Peaks , 2011, Journal of the American Society for Mass Spectrometry.

[76]  J. Sillero,et al.  IMS-MS studies based on coupling a differential mobility analyzer (DMA) to commercial API-MS systems , 2010 .

[77]  C. Robinson,et al.  Collision cross sections of proteins and their complexes: a calibration framework and database for gas-phase structural biology. , 2010, Analytical chemistry.

[78]  M. Eisenstein,et al.  Gas-phase compaction and unfolding of protein structures. , 2010, Analytical chemistry.

[79]  Richard D. Smith,et al.  Isotopic effect on ion mobility and separation of isotopomers by high-field ion mobility spectrometry. , 2010, Analytical chemistry.

[80]  S. Valentine,et al.  A scanning frequency mode for ion cyclotron mobility spectrometry. , 2010, Analytical chemistry.

[81]  S. Valentine,et al.  Determination of cross sections by overtone mobility spectrometry: evidence for loss of unstable structures at higher overtones. , 2010, The journal of physical chemistry. B.

[82]  D. Russell,et al.  Gas-phase ion dynamics in a periodic-focusing DC ion guide , 2010 .

[83]  F. Calvo,et al.  Conformation of polyalanine and polyglycine dications in the gas phase: insight from ion mobility spectrometry and replica-exchange molecular dynamics. , 2010, The journal of physical chemistry. A.

[84]  S. Valentine,et al.  Evidence for a quasi-equilibrium distribution of states for bradykinin [M + 3H]3+ ions in the gas phase. , 2010, The journal of physical chemistry. B.

[85]  E. Lankmayr,et al.  Multidimensional approaches in LC and MS for phospholipid bioanalysis. , 2010, Bioanalysis.

[86]  M. Goshe,et al.  Improving protein and proteome coverage through data-independent multiplexed peptide fragmentation. , 2010, Journal of proteome research.

[87]  Ronald J Moore,et al.  An LC-IMS-MS platform providing increased dynamic range for high-throughput proteomic studies. , 2010, Journal of proteome research.

[88]  Richard D. Smith,et al.  Biases in ion transmission through an electrospray ionization-mass spectrometry capillary inlet , 2009, Journal of the American Society for Mass Spectrometry.

[89]  P. Tso,et al.  Monitoring dynamic changes in lymph metabolome of fasting and fed rats by electrospray ionization-ion mobility mass spectrometry (ESI-IMMS). , 2009, Analytical chemistry.

[90]  S. Valentine,et al.  Treatise on the measurement of molecular masses with ion mobility spectrometry. , 2009, Analytical chemistry.

[91]  Richard D. Smith,et al.  Coulombic effects in ion mobility spectrometry. , 2009, Analytical chemistry.

[92]  K. Eng,et al.  Enhanced sensitivity in proteomics experiments using FAIMS coupled with a hybrid linear ion trap/Orbitrap mass spectrometer. , 2009, Journal of proteome research.

[93]  S. Valentine,et al.  Overtone mobility spectrometry: Part 1. Experimental observations , 2009, Journal of the American Society for Mass Spectrometry.

[94]  S. Valentine,et al.  Overtone mobility spectrometry: Part 2. Theoretical considerations of resolving power , 2009, Journal of the American Society for Mass Spectrometry.

[95]  D. Clemmer,et al.  High-resolution ion cyclotron mobility spectrometry. , 2009, Analytical chemistry.

[96]  Richard D. Smith,et al.  Fundamentals of traveling wave ion mobility spectrometry. , 2008, Analytical chemistry.

[97]  A. Heck Native mass spectrometry: a bridge between interactomics and structural biology , 2008, Nature Methods.

[98]  Michael J MacCoss,et al.  Assessing the dynamic range and peak capacity of nanoflow LC-FAIMS-MS on an ion trap mass spectrometer for proteomics. , 2008, Analytical chemistry.

[99]  H. Hill,et al.  Predicting optimal resolving power for ambient pressure ion mobility spectrometry. , 2008, Analytical chemistry.

[100]  Yehia M. Ibrahim,et al.  Pseudorandom sequence modifications for ion mobility orthogonal time-of-flight mass spectrometry. , 2008, Analytical chemistry.

[101]  S. Valentine,et al.  Improving the efficiency of IMS-IMS by a combing technique. , 2008, Analytical chemistry.

[102]  Yehia M. Ibrahim,et al.  Enhanced ion utilization efficiency using an electrodynamic ion funnel trap as an injection mechanism for ion mobility spectrometry. , 2008, Analytical chemistry.

[103]  Y. Mechref,et al.  Profiling of human serum glycans associated with liver cancer and cirrhosis by IMS-MS. , 2008, Journal of proteome research.

[104]  Yehia M. Ibrahim,et al.  Ion funnel trap interface for orthogonal time-of-flight mass spectrometry. , 2007, Analytical chemistry.

[105]  D. Isailovic,et al.  Resolving oligomers from fully grown polymers with IMS-MS. , 2007, Analytical chemistry.

[106]  F. Fernández,et al.  Performance, resolving power, and radial ion distributions of a prototype nanoelectrospray ionization resistive glass atmospheric pressure ion mobility spectrometer. , 2007, Analytical chemistry.

[107]  Erin Shammel Baker,et al.  Ion mobility spectrometry—mass spectrometry performance using electrodynamic ion funnels and elevated drift gas pressures , 2007, Journal of the American Society for Mass Spectrometry.

[108]  Stephen Naylor,et al.  Mapping the human plasma proteome by SCX-LC-IMS-MS , 2007, Journal of the American Society for Mass Spectrometry.

[109]  Michael A. Buschbach,et al.  Multiplexed ion mobility spectrometry-orthogonal time-of-flight mass spectrometry. , 2007, Analytical chemistry.

[110]  K. Thalassinos,et al.  An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/oa-ToF instrument , 2007 .

[111]  Richard D. Smith,et al.  Toward plasma proteome profiling with ion mobility-mass spectrometry. , 2006, Journal of proteome research.

[112]  B. Thomson,et al.  The potential of differential mobility analysis coupled to MS for the study of very large singly and multiply charged proteins and protein complexes in the gas phase. , 2006, Biotechnology journal.

[113]  S. Valentine,et al.  Split-field drift tube/mass spectrometry and isotopic labeling techniques for determination of single amino acid polymorphisms. , 2006, Journal of proteome research.

[114]  H. Hill,et al.  Hadamard transform ion mobility spectrometry. , 2006, Analytical chemistry.

[115]  Richard D. Smith,et al.  An IMS-IMS analogue of MS-MS. , 2006, Analytical chemistry.

[116]  A. Loboda Novel ion mobility setup combined with collision cell and time-of-flight mass spectrometer , 2006, Journal of the American Society for Mass Spectrometry.

[117]  Andrew W. Szumlas,et al.  Phase-resolved detection in ion-mobility spectrometry , 2006 .

[118]  Ryan D Leib,et al.  Enhanced mixture analysis of poly(ethylene glycol) using high-field asymmetric waveform ion mobility spectrometry combined with fourier transform ion cyclotron resonance mass spectrometry. , 2006, Analytical chemistry.

[119]  S. Valentine,et al.  IMS-IMS and IMS-IMS-IMS/MS for separating peptide and protein fragment ions. , 2006, Analytical chemistry.

[120]  C. Robinson,et al.  Understanding Protein Interactions and Their Representation in the Gas Phase of the Mass Spectrometer , 2006 .

[121]  Richard D. Smith,et al.  Feasibility of higher-order differential ion mobility separations using new asymmetric waveforms. , 2006, The journal of physical chemistry. A.

[122]  S. Valentine,et al.  Developing liquid chromatography ion mobility mass spectometry techniques , 2005, Expert review of proteomics.

[123]  Michael A. Buschbach,et al.  High-sensitivity ion mobility spectrometry/mass spectrometry using electrodynamic ion funnel interfaces. , 2005, Analytical chemistry.

[124]  M. Gorenstein,et al.  Quantitative proteomic analysis by accurate mass retention time pairs. , 2005, Analytical chemistry.

[125]  B. Ruotolo,et al.  The influence and utility of varying field strength for the separation of tryptic peptides by ion mobility-mass spectrometry , 2005, Journal of the American Society for Mass Spectrometry.

[126]  John A. McLean,et al.  Ion mobility–mass spectrometry: a new paradigm for proteomics , 2005 .

[127]  B. Ruotolo,et al.  An electrostatic focusing ion guide for ion mobility-mass spectrometry , 2004 .

[128]  R. Bateman,et al.  Applications of a travelling wave-based radio-frequency-only stacked ring ion guide. , 2004, Rapid communications in mass spectrometry : RCM.

[129]  K. Thalassinos,et al.  Ion mobility mass spectrometry of proteins in a modified commercial mass spectrometer , 2004 .

[130]  Brandon T Ruotolo,et al.  Peak capacity of ion mobility mass spectrometry: the utility of varying drift gas polarizability for the separation of tryptic peptides. , 2004, Journal of mass spectrometry : JMS.

[131]  A. E. Counterman,et al.  Anhydrous Polyproline Helices and Globules , 2004 .

[132]  Z. Mester,et al.  Separation of cisplatin and its hydrolysis products using electrospray ionization high-field asymmetric waveform ion mobility spectrometry coupled with ion trap mass spectrometry. , 2003, Analytical chemistry.

[133]  M. Moon,et al.  Nanoflow LC/ion mobility/CID/TOF for proteomics: analysis of a human urinary proteome. , 2003, Journal of proteome research.

[134]  S. Valentine,et al.  A split-field drift tube for separation and efficient fragmentation of biomolecular ions. , 2003, Analytical chemistry.

[135]  John B Fenn,et al.  Electrospray wings for molecular elephants (Nobel lecture). , 2003, Angewandte Chemie.

[136]  Y. Mechref,et al.  Development of high-sensitivity ion trap ion mobility spectrometry time-of-flight techniques: a high-throughput nano-LC-IMS-TOF separation of peptides arising from a Drosophila protein extract. , 2003, Analytical chemistry.

[137]  S. Valentine,et al.  Development of high-throughput liquid chromatography injected ion mobility quadrupole time-of-flight techniques for analysis of complex peptide mixtures. , 2002, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[138]  D. Clemmer,et al.  Gas-phase separations of protein and peptide ion fragments generated by collision-induced dissociation in an ion trap. , 2002, Analytical chemistry.

[139]  Luther W. Beegle,et al.  Effects of drift-gas polarizability on glycine peptides in ion mobility spectrometry , 2002 .

[140]  D. Barnett,et al.  Tandem mass spectra of tryptic peptides at signal-to-background ratios approaching unity using electrospray ionization high-field asymmetric waveform ion mobility spectrometry/hybrid quadrupole time-of-flight mass spectrometry. , 2002, Rapid communications in mass spectrometry : RCM.

[141]  L. Beegle,et al.  Investigation of drift gas selectivity in high resolution ion mobility spectrometry with mass spectrometry detection , 2002, Journal of the American Society for Mass Spectrometry.

[142]  A. E. Counterman,et al.  Coupling ion mobility separations, collisional activation techniques, and multiple stages of MS for analysis of complex peptide mixtures. , 2002, Analytical chemistry.

[143]  L. Ding,et al.  Atmospheric pressure ion trapping in a tandem FAIMS-FAIMS coupled to a TOFMS: Studies with electrospray generated gramicidin S ions , 2001, Journal of the American Society for Mass Spectrometry.

[144]  D. Clemmer,et al.  Monitoring Structural Changes of Proteins in an Ion Trap over ∼10−200 ms: Unfolding Transitions in Cytochrome c Ions , 2001 .

[145]  A. Shvartsburg,et al.  Prediction of peptide ion mobilities via a priori calculations from intrinsic size parameters of amino acid residues , 2001, Journal of the American Society for Mass Spectrometry.

[146]  A. E. Counterman,et al.  Collision-induced dissociation of mobility-separated ions using an orifice-skimmer cone at the back of a drift tube. , 2001, Analytical chemistry.

[147]  D. Clemmer,et al.  Ion trap/ion mobility/quadrupole/time-of-flight mass spectrometry for peptide mixture analysis. , 2001, Analytical chemistry.

[148]  D. Barnett,et al.  Analysis of a tryptic digest of pig hemoglobin using ESI-FAIMS-MS. , 2000, Analytical chemistry.

[149]  D. Barnett,et al.  Isotope separation using high–field asymmetric waveform ion mobility spectrometry , 2000 .

[150]  D. Clemmer,et al.  Mobility labeling for parallel CID of ion mixtures. , 2000, Analytical chemistry.

[151]  A. Shvartsburg,et al.  Evaluation of Ionic Mobilities by Coupling the Scattering on Atoms and on Electron Density , 2000 .

[152]  A. Shvartsburg,et al.  Modeling ionic mobilities by scattering on electronic density isosurfaces: Application to silicon cluster anions , 2000 .

[153]  H. Hill,et al.  Using different drift gases to change separation factors (α) in ion mobility spectrometry , 2000 .

[154]  T. Wyttenbach,et al.  Conformations of biopolymers in the gas phase: a new mass spectrometric method 2 2 Dedicated to Bob , 2000 .

[155]  L. Ding,et al.  Ion trapping at atmospheric pressure (760 Torr) and room temperature with a high-field asymmetric waveform ion mobility spectrometer , 1999 .

[156]  D. Clemmer,et al.  Intrinsic Size Parameters for Val, Ile, Leu, Gln, Thr, Phe, and Trp Residues from Ion Mobility Measurements of Polyamino Acid Ions , 1999 .

[157]  D. Clemmer,et al.  Gas-phase separations of electrosprayed peptide libraries. , 1999, Analytical chemistry.

[158]  R. Purves,et al.  Electrospray ionization high-field asymmetric waveform ion mobility spectrometry-mass spectrometry. , 1999, Analytical chemistry.

[159]  S. Valentine,et al.  Intrinsic Amino Acid Size Parameters from a Series of 113 Lysine-Terminated Tryptic Digest Peptide Ions , 1999 .

[160]  Roger Guevremont,et al.  Atmospheric pressure ion focusing in a high-field asymmetric waveform ion mobility spectrometer , 1999 .

[161]  S. Valentine,et al.  ESI/ion trap/ion mobility/time-of-flight mass spectrometry for rapid and sensitive analysis of biomolecular mixtures. , 1999, Analytical chemistry.

[162]  R. Purves,et al.  MASS SPECTROMETRIC CHARACTERIZATION OF A HIGH-FIELD ASYMMETRIC WAVEFORM ION MOBILITY SPECTROMETER , 1998 .

[163]  S. Valentine,et al.  High-order structure and dissociation of gaseous peptide aggregates that are hidden in mass spectra , 1998, Journal of the American Society for Mass Spectrometry.

[164]  S. Kaufman Analysis of biomolecules using electrospray and nanoparticle methods: the gas-phase electrophoretic mobility molecular analyzer (gemma) , 1998 .

[165]  J P Reilly,et al.  Three-dimensional ion mobility/TOFMS analysis of electrosprayed biomolecules. , 1998, Analytical chemistry.

[166]  S. Valentine,et al.  Peer Reviewed: Injected-Ion Mobility Analysis of Biomolecules , 1997 .

[167]  M. Jarrold,et al.  High resolution ion mobility measurements for gas phase proteins: correlation between solution phase and gas phase conformations , 1997 .

[168]  S. Valentine,et al.  An Ion Trap Interface for ESI−Ion Mobility Experiments , 1997 .

[169]  L. Ding,et al.  Combined Ion Mobility/Time-of-Flight Mass Spectrometry Study of Electrospray-Generated Ions. , 1997, Analytical chemistry.

[170]  David E. Clemmer,et al.  Ion Mobility Measurements and their Applications to Clusters and Biomolecules , 1997 .

[171]  S. Valentine,et al.  H/D Exchange Levels of Shape-Resolved Cytochrome c Conformers in the Gas Phase , 1997 .

[172]  M. Jarrold,et al.  High-resolution ion mobility measurements , 1997 .

[173]  Martin F. Jarrold,et al.  “Denaturation” and Refolding of Cytochrome c in Vacuo , 1996 .

[174]  A. Shvartsburg,et al.  An exact hard-spheres scattering model for the mobilities of polyatomic ions , 1996 .

[175]  George C. Schatz,et al.  Structural Information from Ion Mobility Measurements: Effects of the Long-Range Potential , 1996 .

[176]  Michael T. Bowers,et al.  Gas-Phase Conformation of Biological Molecules: Bradykinin , 1996 .

[177]  J. Rosell-Llompart,et al.  Sizing nanoparticles and ions with a short differential mobility analyzer , 1996 .

[178]  S. Kaufman,et al.  Macromolecule analysis based on electrophoretic mobility in air:  globular proteins. , 1996, Analytical chemistry.

[179]  David E. Clemmer,et al.  NAKED PROTEIN CONFORMATIONS : CYTOCHROME C IN THE GAS PHASE , 1995 .

[180]  T. Wyttenbach,et al.  Inclusion of a MALDI ion source in the ion chromatography technique: conformational information on polymer and biomolecular ions , 1995 .

[181]  M. Jarrold,et al.  Physical and chemical evidence for metallofullerenes with metal atoms as part of the cage , 1994, Nature.

[182]  Herbert H. Hill,et al.  Electrospray ionization ion mobility spectrometry , 1994 .

[183]  M. Jarrold,et al.  Annealing Carbon Cluster Ions: A Mechanism for Fullerene Synthesis , 1994 .

[184]  Ming-Teh Hsu,et al.  Carbon Cluster Cations with up to 84 Atoms: Structures, Formation Mechanism, and Reactivity. , 1993 .

[185]  Ming-Teh Hsu,et al.  Carbon cluster cations with up to 84 atoms: structures, formation mechanism, and reactivity , 1993 .

[186]  M. Jarrold,et al.  Annealing and dissociation of carbon rings , 1993 .

[187]  M. Jarrold,et al.  Annealing C60+: Synthesis of Fullerenes and Large Carbon Rings , 1993, Science.

[188]  Michael T. Bowers,et al.  Experimental evidence for the formation of fullerenes by collisional heating of carbon rings in the gas phase , 1993, Nature.

[189]  M. Bowers,et al.  Do small fullerenes exist only on the computer? Experimental results on C=/−20 and C+/−24 , 1993 .

[190]  M. Jarrold,et al.  Annealing of silicon clusters , 1992 .

[191]  M. Jarrold,et al.  Silicon cluster ions: Evidence for a structural transition. , 1991, Physical review letters.

[192]  Brian T. Chait,et al.  Probing conformational changes in proteins by mass spectrometry , 1990 .

[193]  M. Bowers,et al.  A hybrid double-focusing mass spectrometer—High-pressure drift reaction cell to study thermal energy reactions of mass-selected ions , 1990 .

[194]  C. G. Edmonds,et al.  Effect of reducing disulfide-containing proteins on electrospray ionization mass spectra. , 1990, Analytical chemistry.

[195]  M. Jarrold,et al.  Chemistry of semiconductor clusters: A study of the reactions of size selected Si+n (n=3–24) with C2H4 using selected ion drift tube techniques , 1989 .

[196]  E. W. McDaniel,et al.  Transport Properties of Ions in Gases , 1988 .

[197]  F. J. Knorr,et al.  Fourier transform ion mobility spectrometry. , 1985, Analytical chemistry.

[198]  E. A. Mason,et al.  Theory of plasma chromatography/gaseous electrophoresis. Review , 1975 .

[199]  C. E. Young,et al.  Water Cluster Ions: Rates of Formation and Decomposition of Hydrates of the Hydronium Ion , 1970 .

[200]  K. B. McAfee,et al.  Identification and Mobility of Ions in a Townsend Discharge by Time-resolved Mass Spectrometry , 1963 .

[201]  E. W. McDaniel,et al.  Mass Spectrographic Identification of the Ion Observed in Hydrogen Mobility Experiments , 1961 .

[202]  E. Mack AVERAGE CROSS-SECTIONAL AREAS OF MOLECULES BY GASEOUS DIFFUSION METHODS , 1925 .

[203]  John Zeleny B.Sc. VI. On the ratio of the velocities of the two ions produced in gases by Röntgen radiation; and on some related phenomena , 1898 .

[204]  E. R. M. B.Sc. LIV. The velocity and rate of recombination of the ions of gases exposed to Röntgen radiation , 1897 .

[205]  J. J. Thomson,et al.  XL. Cathode Rays , 1897 .

[206]  Melvin A. Park,et al.  Fundamentals of Trapped Ion Mobility Spectrometry , 2014, Journal of The American Society for Mass Spectrometry.

[207]  Rebecca S. Glaskin New techniques for high mobility resolution and ion dynamics in a circular drift tube , 2013 .

[208]  Ronald J. Moore,et al.  High-Definition Differential Ion Mobility Spectrometry with Resolving Power up to 500 , 2012, Journal of The American Society for Mass Spectrometry.

[209]  Richard D. Smith,et al.  Two-dimensional ion mobility analyses of proteins and peptides. , 2009, Methods in molecular biology.

[210]  Andrew W. Szumlas,et al.  Hadamard transform ion mobility spectrometry. , 2006, Analytical chemistry.

[211]  S. Valentine,et al.  Development of field modulation in a split-field drift tube for high-throughput multidimensional separations. , 2005, Journal of proteome research.

[212]  R. A. Miller,et al.  Differential mobility spectrometry of chlorocarbons with a micro-fabricated drift tube. , 2004, The Analyst.

[213]  S. Valentine,et al.  Resolving isomeric peptide mixtures: a combined HPLC/ion mobility-TOFMS analysis of a 4000-component combinatorial library. , 2002, Analytical chemistry.

[214]  Hill,et al.  Using different drift gases to change separation factors (alpha) in ion mobility spectrometry , 2000, Analytical chemistry.

[215]  S. Valentine,et al.  Injected-ion mobility analysis of biomolecules , 1997 .

[216]  B. Chait,et al.  Heat-induced conformational changes in proteins studied by electrospray ionization mass spectrometry. , 1993, Analytical chemistry.

[217]  Gary A. Eiceman,et al.  Ion Mobility Spectrometry in Analytical Chemistry , 1990 .

[218]  K. B. McAfee,et al.  Low-Field Drift Velocities and Reactions of Nitrogen Ions in Nitrogen , 1967 .

[219]  E. Board,et al.  CATHODE RAYS , 1966 .

[220]  E. W. McDaniel,et al.  Drift Tube-Mass Spectrometer for Studies of Low-Energy Ion-Molecule Reactions , 1962 .