Coexistence of high performance resistance and capacitance memory based on multilayered metal-oxide structures

The Au/DyMnO3/Nb:SrTiO3/Au stack was demonstrated to be not only a high performance memristor but also a good memcapacitor. The switching time is below 10 ns, the retention is longer than 105 s, and the change ratio of resistance (or capacitance) is larger than 100 over the 108 switching cycles. Moreover, this stack has a broad range of intermediate states that are tunable by the operating voltages. It is indicated that the memory effects originate from the Nb:SrTiO3/Au junction where the barrier profile is electrically modulated. The serial connected Au/DyMnO3/Nb:SrTiO3 stack behaves as a high nonlinear resistor paralleling with a capacitor, which raises the capacitance change ratio and enhances the memory stability of the device.

[1]  A. Tagantsev,et al.  Space-charge influenced-injection model for conduction in Pb(ZrxTi1−x)O3 thin films , 1998 .

[2]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[3]  R. D. Sole,et al.  Physics of Surfaces , 1992 .

[4]  A. Sawa,et al.  Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti∕Pr0.7Ca0.3MnO3 interface , 2004, cond-mat/0409657.

[5]  A. Sawa,et al.  Electrical properties and colossal electroresistance of heteroepitaxial Sr Ru O 3 ∕ Sr Ti 1 − x Nb x O 3 ( 0.0002 ⩽ x ⩽ 0.02 ) Schottky junctions , 2007 .

[6]  L. Chen,et al.  Comprehensive study of the resistance switching in SrTiO3 and Nb-doped SrTiO3 , 2011 .

[7]  Lu You,et al.  Charge trapping-detrapping induced resistive switching in Ba0.7Sr0.3TiO3 , 2012 .

[8]  Wolf,et al.  Ferroelectric Schottky diode. , 1994, Physical review letters.

[9]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[10]  K. Rana,et al.  Electrical transport across Au/Nb:SrTiO3 Schottky interface with different Nb doping , 2012, 1302.2096.

[11]  B. Delley,et al.  Role of Oxygen Vacancies in Cr‐Doped SrTiO3 for Resistance‐Change Memory , 2007, 0707.0563.

[12]  C. Eom,et al.  Continuous Control of Charge Transport in Bi‐Deficient BiFeO3 Films Through Local Ferroelectric Switching , 2012 .

[13]  Dong-Wook Kim,et al.  Resistance state-dependent barrier inhomogeneity and transport mechanisms in resistive-switching Pt/SrTiO3 junctions , 2011 .

[14]  D. Jeong,et al.  Emerging memories: resistive switching mechanisms and current status , 2012, Reports on progress in physics. Physical Society.

[15]  Di Wu,et al.  Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. , 2013, Nature materials.

[16]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[17]  J. Liu,et al.  High‐Performance Programmable Memory Devices Based on Co‐Doped BaTiO3 , 2011, Advanced materials.

[18]  H. Hwang,et al.  Electric field penetration in Au/Nb: SrTiO3 Schottky junctions probed by bias-dependent internal photoemission , 2011 .

[19]  J. Sun,et al.  Control of normal and abnormal bipolar resistive switching by interface junction on In/Nb:SrTiO3 interface , 2012 .

[20]  Li Xu,et al.  Reverse-bias-induced bipolar resistance switching in Pt∕TiO2∕SrTi0.99Nb0.01O3∕Pt devices , 2008 .

[21]  Jirong Sun,et al.  Rectifying properties of magnetite-based Schottky diode and the effects of magnetic field , 2007 .

[22]  Yuriy V. Pershin,et al.  Memory effects in complex materials and nanoscale systems , 2010, 1011.3053.

[23]  Qi Liu,et al.  Real‐Time Observation on Dynamic Growth/Dissolution of Conductive Filaments in Oxide‐Electrolyte‐Based ReRAM , 2012, Advanced materials.

[24]  X. M. Jiang,et al.  Repetitive switching behaviour of a memristor for passive crossbar applications , 2012 .

[25]  H. Chan,et al.  Leakage current and relaxation characteristics of highly (111)-oriented lead calcium titanate thin films , 2003 .

[26]  J. Sun,et al.  Trap state controlled bipolar resistive switching effect and electronic transport in LaAlO3/Nb:SrTiO3 heterostructures , 2013 .

[27]  Jinjun Shi,et al.  Effect of oxygen content and superconductivity on the nonvolatile resistive switching in YBa2Cu3O6+x/Nb-doped SrTiO3 heterojunctions , 2009 .

[28]  Byung Joon Choi,et al.  A detailed understanding of the electronic bipolar resistance switching behavior in Pt/TiO2/Pt structure , 2011, Nanotechnology.

[29]  Cheol Seong Hwang,et al.  A Resistive Memory in Semiconducting BiFeO3 Thin‐Film Capacitors , 2011, Advanced materials.

[30]  K. Rabe,et al.  Physics of thin-film ferroelectric oxides , 2005, cond-mat/0503372.

[31]  Andrew G. Glen,et al.  APPL , 2001 .

[32]  Andrew Zangwill,et al.  Physics at Surfaces: Physisorption , 1988 .

[33]  J. Bain,et al.  Mobility of oxygen vacancy in SrTiO3 and its implications for oxygen-migration-based resistance switching , 2011 .