Electrochemical conversion of a fluorinated greenhouse gas using a lithium battery configuration

[1]  L. Christophorou,et al.  Basic physics of gaseous dielectrics , 1990 .

[2]  Jie Gao,et al.  Mechanistic insights into operational lithium–sulfur batteries by in situ X-ray diffraction and absorption spectroscopy , 2014 .

[3]  Thomas Braun,et al.  Catalytic Degradation of Sulfur Hexafluoride by Rhodium Complexes. , 2015, Angewandte Chemie.

[4]  J. Janek,et al.  Pressure Dynamics in Metal–Oxygen (Metal–Air) Batteries: A Case Study on Sodium Superoxide Cells , 2014 .

[5]  A. Thomson,et al.  The representative concentration pathways: an overview , 2011 .

[6]  K. Andreas Friedrich,et al.  In-situ X-ray diffraction studies of lithium-sulfur batteries , 2013 .

[7]  K. Calvin,et al.  The RCP greenhouse gas concentrations and their extensions from 1765 to 2300 , 2011 .

[8]  T. Braun,et al.  S-F and S-C activation of SF6 and SF5 derivatives at rhodium: conversion of SF6 into H2S. , 2014, Angewandte Chemie.

[9]  N. Malik,et al.  Breakdown Mechanisms in Sulphur-Hexafluoride , 1978, IEEE Transactions on Electrical Insulation.

[10]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[11]  Maarten M. J. Smulders,et al.  Encapsulation, storage and controlled release of sulfur hexafluoride from a metal-organic capsule. , 2011, Chemical communications.

[12]  C. Limberg,et al.  The activation of sulfur hexafluoride at highly reduced low-coordinate nickel dinitrogen complexes. , 2014, Angewandte Chemie.

[13]  R. Clowes,et al.  Porous Organic Cages for Sulfur Hexafluoride Separation , 2016, Journal of the American Chemical Society.

[14]  N. Malik,et al.  A Review of Electrical Breakdown in Mixtures of SF6 and Other Gases , 1979, IEEE Transactions on Electrical Insulation.

[15]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[16]  H. Gasteiger,et al.  Probing the Lithium−Sulfur Redox Reactions: A Rotating-Ring Disk Electrode Study , 2014 .

[17]  S. Sircar,et al.  Heats of Adsorption of Pure SF6 and CO2 on Silicalite Pellets With Alumina Binder , 2001 .

[18]  K. Seppelt Molecular hexafluorides. , 2015, Chemical reviews.

[19]  S. Solomon,et al.  Irreversible climate change due to carbon dioxide emissions , 2009, Proceedings of the National Academy of Sciences.

[20]  B. Harvey,et al.  Reactions of SF6 with organotitanium and organozirconium complexes: the "inert" SF6 as a reactive fluorinating agent. , 2005, Journal of the American Chemical Society.

[21]  Michael F Toney,et al.  In Operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries. , 2012, Journal of the American Chemical Society.

[22]  Sanjeev Mukerjee,et al.  Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium−Air Battery , 2010 .

[23]  Chai Ching Tan,et al.  Li−SF6 combustion in stored chemical energy propulsion systems , 1991 .

[24]  Unfccc Kyoto Protocol to the United Nations Framework Convention on Climate Change , 1997 .

[25]  R. Weiss,et al.  History of atmospheric SF 6 from 1973 to 2008 , 2010 .

[26]  E. Dlugokencky,et al.  Non-CO2 greenhouse gases and climate change , 2011, Nature.

[27]  Linda F. Nazar,et al.  Advances in understanding mechanisms underpinning lithium–air batteries , 2016, Nature Energy.

[28]  K. Abraham Electrolyte-Directed Reactions of the Oxygen Electrode in Lithium-Air Batteries , 2015 .

[29]  Yang Shao-Horn,et al.  Experimental and Computational Analysis of the Solvent-Dependent O2/Li(+)-O2(-) Redox Couple: Standard Potentials, Coupling Strength, and Implications for Lithium-Oxygen Batteries. , 2016, Angewandte Chemie.

[30]  J. M. Reilly,et al.  Temperature increase of 21st century mitigation scenarios , 2008, Proceedings of the National Academy of Sciences.

[31]  Takashi Mori,et al.  Combining Accurate O2 and Li2O2 Assays to Separate Discharge and Charge Stability Limitations in Nonaqueous Li-O2 Batteries. , 2013, The journal of physical chemistry letters.

[32]  B. Harvey,et al.  SF6 as a Selective and Reactive Fluorinating Agent for Low-Valent Transition Metal Complexes# , 2007 .

[33]  A. P. Hagen,et al.  High-pressure interaction of sulfur hexafluoride with carbon disulfide and carbonyl sulfide , 1975 .

[34]  Kishan Dholakia,et al.  The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries. , 2014, Nature chemistry.

[35]  A. Grimaud,et al.  Long-Time and Reliable Gas Monitoring in Li-O2 Batteries via a Swagelok Derived Electrochemical Cell , 2016 .

[36]  Venkatasubramanian Viswanathan,et al.  Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li-O₂ batteries. , 2015, Nature chemistry.

[37]  Lee Johnson,et al.  High Capacity Na–O2 Batteries: Key Parameters for Solution-Mediated Discharge , 2016 .

[38]  L. Hockstad,et al.  Inventory of U.S. Greenhouse Gas Emissions and Sinks , 2018 .

[39]  R. B. Smith,et al.  Stored Chemical Energy Propulsion System for Underwater Applications , 1981 .

[40]  G. Faeth,et al.  Steady Metal Combustor as a Closed Thermal Energy Source , 1978 .

[41]  J. A. Schwarz,et al.  Heterogeneity of Pillared Clays Determined by Adsorption of SF6 at Temperatures Near Ambient , 1997 .

[42]  D. Prendergast,et al.  Lithium Polysulfide Radical Anions in Ether-Based Solvents , 2016 .

[43]  Y. Chiang,et al.  Adsorption equilibrium of sulfur hexafluoride on multi-walled carbon nanotubes. , 2010, Journal of hazardous materials.

[44]  Yuhui Chen,et al.  A stable cathode for the aprotic Li-O2 battery. , 2013, Nature materials.

[45]  T. Jamison,et al.  Photoredox Activation of SF6 for Fluorination. , 2016, Angewandte Chemie.

[46]  Mark Wild,et al.  Lithium sulfur batteries, a mechanistic review , 2015 .

[47]  P. Bruce,et al.  A Reversible and Higher-Rate Li-O2 Battery , 2012, Science.

[48]  Yang Shao-Horn,et al.  Lithium–oxygen batteries: bridging mechanistic understanding and battery performance , 2013 .

[49]  J. R. Wazer,et al.  Compilation of reported F19 NMR chemical shifts, 1951 to mid-1967 , 1970 .

[50]  John F. B. Mitchell,et al.  The next generation of scenarios for climate change research and assessment , 2010, Nature.

[51]  J. R. Case,et al.  Some Chemical Reactions of Sulphur Hexafluoride , 1962, Nature.