Rhodopsin gene copies in Japanese eel originated in a teleost-specific genome duplication

[1]  W. Davidson,et al.  Autopolyploidy genome duplication preserves other ancient genome duplications in Atlantic salmon (Salmo salar) , 2017, PloS one.

[2]  Yoji Nakamura A mathematical model for gene evolution after whole genome duplication , 2017, 1702.06255.

[3]  Michael Liem,et al.  Rapid de novo assembly of the European eel genome from nanopore sequencing reads , 2017, Scientific Reports.

[4]  Ryan K. Schott,et al.  A second visual rhodopsin gene, rh1-2, is expressed in zebrafish photoreceptors and found in other ray-finned fishes , 2017, Journal of Experimental Biology.

[5]  Samuel A. M. Martin,et al.  Lineage-specific rediploidization is a mechanism to explain time-lags between genome duplication and evolutionary diversification , 2017, bioRxiv.

[6]  J. Asturiano,et al.  The expression of nuclear and membrane estrogen receptors in the European eel throughout spermatogenesis. , 2017, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[7]  Ying Sun,et al.  A chromosome-level genome assembly of the Asian arowana, Scleropages formosus , 2016, Scientific Data.

[8]  John T. Clarke,et al.  Little evidence for enhanced phenotypic evolution in early teleosts relative to their living fossil sister group , 2016, Proceedings of the National Academy of Sciences.

[9]  D. Righton,et al.  Empirical observations of the spawning migration of European eels: The long and dangerous road to the Sargasso Sea , 2016, Science Advances.

[10]  J. Tomkiewicz,et al.  Three nuclear and two membrane estrogen receptors in basal teleosts, Anguilla sp.: Identification, evolutionary history and differential expression regulation. , 2016, General and comparative endocrinology.

[11]  Daniel R. Zerbino,et al.  Ensembl 2016 , 2015, Nucleic Acids Res..

[12]  H. Miyakawa,et al.  Neofunctionalization of Androgen Receptor by Gain-of-Function Mutations in Teleost Fish Lineage. , 2016, Molecular biology and evolution.

[13]  Katsumi Tsukamoto,et al.  Rapid genome reshaping by multiple-gene loss after whole-genome duplication in teleost fish suggested by mathematical modeling , 2015, Proceedings of the National Academy of Sciences.

[14]  M. Friedman,et al.  Phylogenetic analysis of molecular and morphological data highlights uncertainty in the relationships of fossil and living species of Elopomorpha (Actinopterygii: Teleostei). , 2015, Molecular phylogenetics and evolution.

[15]  Hideki Tanaka Progression in artificial seedling production of Japanese eel Anguillajaponica , 2014, Fisheries Science.

[16]  S. Neuhauss,et al.  Whole-genome duplication in teleost fishes and its evolutionary consequences , 2014, Molecular Genetics and Genomics.

[17]  B. Koop,et al.  The Genome and Linkage Map of the Northern Pike (Esox lucius): Conserved Synteny Revealed between the Salmonid Sister Group and the Neoteleostei , 2014, PloS one.

[18]  Matthew Fraser,et al.  InterProScan 5: genome-scale protein function classification , 2014, Bioinform..

[19]  M. Miya,et al.  Phylogeny of the Elopomorpha (Teleostei): evidence from six nuclear and mitochondrial markers. , 2014, Molecular phylogenetics and evolution.

[20]  Atushi Fujiwara,et al.  A ddRAD-based genetic map and its integration with the genome assembly of Japanese eel (Anguilla japonica) provides insights into genome evolution after the teleost-specific genome duplication , 2014, BMC Genomics.

[21]  F. Santini,et al.  A multi-locus molecular timescale for the origin and diversification of eels (Order: Anguilliformes). , 2013, Molecular phylogenetics and evolution.

[22]  Koichiro Tamura,et al.  MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. , 2013, Molecular biology and evolution.

[23]  Görel Sundström,et al.  The vertebrate ancestral repertoire of visual opsins, transducin alpha subunits and oxytocin/vasopressin receptors was established by duplication of their shared genomic region in the two rounds of early vertebrate genome duplications , 2013, BMC Evolutionary Biology.

[24]  Colin N. Dewey,et al.  De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis , 2013, Nature Protocols.

[25]  M. Hattori,et al.  Evolutionary changes of multiple visual pigment genes in the complete genome of Pacific bluefin tuna , 2013, Proceedings of the National Academy of Sciences.

[26]  G. Ortí,et al.  Multi-locus phylogenetic analysis reveals the pattern and tempo of bony fish evolution , 2013, PLoS currents.

[27]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[28]  Wei-min Wang,et al.  Flow cytometric determination of genome size for eight commercially important fish species in China , 2012, In Vitro Cellular & Developmental Biology - Animal.

[29]  W. Pirovano,et al.  Toward almost closed genomes with GapFiller , 2012, Genome Biology.

[30]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[31]  Diana J. Rennison,et al.  Opsin gene duplication and divergence in ray-finned fish. , 2012, Molecular phylogenetics and evolution.

[32]  Katsumi Tsukamoto,et al.  Primitive Duplicate Hox Clusters in the European Eel's Genome , 2012, PloS one.

[33]  J. M. Morrow,et al.  A novel rhodopsin-like gene expressed in zebrafish retina , 2011, Visual Neuroscience.

[34]  H. Bart,et al.  Evidence from mitochondrial genomics supports the lower Mesozoic of South Asia as the time and place of basal divergence of cypriniform fishes (Actinopterygii: Ostariophysi) , 2011 .

[35]  Carl Kingsford,et al.  A fast, lock-free approach for efficient parallel counting of occurrences of k-mers , 2011, Bioinform..

[36]  Walter Pirovano,et al.  BIOINFORMATICS APPLICATIONS , 2022 .

[37]  Michael J. Miller,et al.  Oceanic spawning ecology of freshwater eels in the western North Pacific , 2011, Nature communications.

[38]  Hiroshi C. Watanabe,et al.  Molecular mechanism of long-range synergetic color tuning between multiple amino acid residues in conger rhodopsin , 2010, Biophysics.

[39]  James E. Hayes,et al.  JCoDA: a tool for detecting evolutionary selection , 2010, BMC Bioinformatics.

[40]  Cole Trapnell,et al.  Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. , 2010, Nature biotechnology.

[41]  Michael J. Miller,et al.  Deep-ocean origin of the freshwater eels , 2010, Biology Letters.

[42]  Baocheng Guo,et al.  Hox genes of the Japanese eel Anguilla japonica and Hox cluster evolution in teleosts. , 2009, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[43]  E. Wiley,et al.  A teleost classification based on monophyletic groups , 2010 .

[44]  H. Innan,et al.  Potential of fish opsin gene duplications to evolve new adaptive functions. , 2009, Trends in genetics : TIG.

[45]  Axel Meyer,et al.  Timing of genome duplications relative to the origin of the vertebrates: did cyclostomes diverge before or after? , 2008, Molecular biology and evolution.

[46]  Kazutaka Katoh,et al.  Multiple alignment of DNA sequences with MAFFT. , 2009, Methods in molecular biology.

[47]  K. Tsukamoto,et al.  Discovery of mature freshwater eels in the open ocean , 2009, Fisheries Science.

[48]  Yann Guiguen,et al.  The fate of the duplicated androgen receptor in fishes: a late neofunctionalization event? , 2008, BMC Evolutionary Biology.

[49]  C. Hawryshyn,et al.  Ontogenetic changes in photoreceptor opsin gene expression in coho salmon (Oncorhynchus kisutch, Walbaum) , 2008, Journal of Experimental Biology.

[50]  Huan Zhang,et al.  Elucidation of phenotypic adaptations: Molecular analyses of dim-light vision proteins in vertebrates , 2008, Proceedings of the National Academy of Sciences.

[51]  David Haussler,et al.  Using native and syntenically mapped cDNA alignments to improve de novo gene finding , 2008, Bioinform..

[52]  Livia S. Carvalho,et al.  The visual pigments of a deep-sea teleost, the pearl eye Scopelarchus analis , 2007, Journal of Experimental Biology.

[53]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[54]  I. Shimizu,et al.  Molecular mechanism of visual adaptation in fish , 2005 .

[55]  Paramvir S. Dehal,et al.  Two Rounds of Whole Genome Duplication in the Ancestral Vertebrate , 2005, PLoS biology.

[56]  Ewan Birney,et al.  Automated generation of heuristics for biological sequence comparison , 2005, BMC Bioinformatics.

[57]  A. Meyer,et al.  Phylogenetic Timing of the Fish-Specific Genome Duplication Correlates with the Diversification of Teleost Fish , 2004, Journal of Molecular Evolution.

[58]  Klaas Vandepoele,et al.  Major events in the genome evolution of vertebrates: paranome age and size differ considerably between ray-finned fishes and land vertebrates. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[59]  F. Crescitelli,et al.  The visual pigment sensitivity hypothesis: further evidence from fishes of varying habitats , 1985, Journal of Comparative Physiology A.

[60]  S. Salzberg,et al.  Versatile and open software for comparing large genomes , 2004, Genome Biology.

[61]  C. Stoeckert,et al.  OrthoMCL: identification of ortholog groups for eukaryotic genomes. , 2003, Genome research.

[62]  Wei‐Jen Chen,et al.  Repeatability of clades as a criterion of reliability: a case study for molecular phylogeny of Acanthomorpha (Teleostei) with larger number of taxa. , 2003, Molecular phylogenetics and evolution.

[63]  K. Saitoh Mitotic and meiotic analyses of the 'large race' of Cobitis striata, a polyploid spined loach of hybrid origin. , 2003, Folia biologica.

[64]  Huan Zhang,et al.  Isolation of freshwater and deep-sea type opsin genes from the common Japanese conger , 2002 .

[65]  W. McFarland,et al.  Developmental Changes in the Visual Pigments of the Yellowfin Tuna, Thunnus Albacares , 2002 .

[66]  Masami Hasegawa,et al.  CONSEL: for assessing the confidence of phylogenetic tree selection , 2001, Bioinform..

[67]  Y Van de Peer,et al.  Comparative genomics provides evidence for an ancient genome duplication event in fish. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[68]  J. Inoue,et al.  A mitogenomic perspective on the basal teleostean phylogeny: resolving higher-level relationships with longer DNA sequences. , 2001, Molecular phylogenetics and evolution.

[69]  M. Lynch,et al.  The evolutionary fate and consequences of duplicate genes. , 2000, Science.

[70]  A. Eyre-Walker Fundamentals of Molecular Evolution (2nd edn) , 2000, Heredity.

[71]  N. Okamoto,et al.  Molecular cloning of fresh water and deep‐sea rod opsin genes from Japanese eel Anguilla japonica and expressional analyses during sexual maturation 1 , 2000, FEBS letters.

[72]  Y. Fukada,et al.  Exo-rhodopsin: a novel rhodopsin expressed in the zebrafish pineal gland. , 1999, Brain research. Molecular brain research.

[73]  K. S. Kim,et al.  Model dependence of the phylogenetic inference: relationship among carnivores, Perissodactyls and cetartiodactyls as inferred from mitochondrial genome sequences. , 1999, Genes & genetic systems.

[74]  S. Brenner,et al.  Late changes in spliceosomal introns define clades in vertebrate evolution. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[75]  Joachim Wittbrodt,et al.  More genes in fish , 1998 .

[76]  J. Partridge,et al.  Switch in rod opsin gene expression in the European eel, Anguilla anguilla (L.) , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[77]  Gapped BLAST and PSI-BLAST: A new , 1997 .

[78]  K. Saitoh,et al.  Tissue Preservation and Total DNA Extraction form Fish Stored at Ambient Temperature Using Buffers Containing High Concentration of Urea , 1996 .

[79]  Robert R. Birge,et al.  Characterization of the primary photochemical events in bacteriorhodopsin and rhodopsin , 1996 .

[80]  J. Partridge,et al.  The molecular basis for the green-blue sensitivity shift in the rod visual pigments of the European eel , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[81]  A. Sidow,et al.  Gene duplications and the origins of vertebrate development. , 1994, Development (Cambridge, England). Supplement.

[82]  Masami Hasegawa,et al.  Accuracies of the simple methods for estimating the bootstrap probability of a maximum-likelihood tree , 1994 .

[83]  J. Partridge,et al.  Opsin substitution induced in retinal rods of the eel (Anguilla anguilla ( L.)): a model for G -protein-linked receptors , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[84]  Wen-Hsiung Li,et al.  Fundamentals of molecular evolution , 1990 .

[85]  J. S. Nelson,et al.  Fishes of the world. , 1978 .

[86]  Dr. Susumu Ohno Evolution by Gene Duplication , 1970, Springer Berlin Heidelberg.

[87]  D. B. Carlisle,et al.  On the metamorphosis of the visual pigments of Anguilla anguilla (L.) , 1959, Journal of the Marine Biological Association of the United Kingdom.