Application of Fuzzy Logic in Investment-Intensive Decision Making

[1]  Prateek Pandey,et al.  A framework for fuzzy modelling in agricultural diagnostics , 2018, Journal Européen des Systèmes Automatisés.

[2]  Prateek Pandey,et al.  A Predictive Fuzzy Expert System for Crop Disease Diagnostic and Decision Support , 2020 .

[3]  David L. Olson,et al.  Comparison of weights in TOPSIS models , 2004, Math. Comput. Model..

[4]  Mamta Pandey,et al.  Novel Approach for Mobile Based App Development Incorporating MAAF , 2019, Wirel. Pers. Commun..

[5]  Prateek Pandey,et al.  An activity vigilance system for elderly based on fuzzy probability transformations , 2019, J. Intell. Fuzzy Syst..

[6]  Chen-Tung Chen,et al.  Extensions of the TOPSIS for group decision-making under fuzzy environment , 2000, Fuzzy Sets Syst..

[7]  Prateek Pandey,et al.  A fuzzy decision making approach for analogy detection in new product forecasting , 2015, J. Intell. Fuzzy Syst..

[8]  Mamta Pandey,et al.  Application of Fuzzy DEMATEL Approach in Analyzing Mobile App Issues , 2019, Programming and Computer Software.

[9]  Ching-Lai Hwang,et al.  Multiple Attribute Decision Making: Methods and Applications - A State-of-the-Art Survey , 1981, Lecture Notes in Economics and Mathematical Systems.

[10]  W. Pedrycz,et al.  A fuzzy extension of Saaty's priority theory , 1983 .

[11]  János Fülöp,et al.  Working Paper 2011-1, Research Group of Operations Research and Decision Systems, Computer and Automation Institute, Hungarian Academy of Sciences, Budapest , 2011 .

[12]  Hepu Deng,et al.  Multicriteria analysis with fuzzy pairwise comparison , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).

[13]  Prateek Pandey,et al.  A Critical Evaluation of Computational Methods of Forecasting Based on Fuzzy Time Series , 2013, Int. J. Decis. Support Syst. Technol..

[14]  Prateek Pandey,et al.  An Efficient Time Series Forecasting Method Exploiting Fuzziness and Turbulences in Data , 2017, Int. J. Fuzzy Syst. Appl..

[15]  C. Easingwood,et al.  An analogical approach to the long term forecasting of major new product sales , 1989 .

[16]  Mamta Pandey,et al.  Empirical Analysis of Defects in Handheld Device Applications , 2019, ICACDS.

[17]  Robert J. Thomas,et al.  Estimating Market Growth for New Products: An Analogical Diffusion Model Approach , 1985 .

[18]  Cengiz Kahraman,et al.  Fuzzy Multi-Criteria Decision Making: Theory and Applications with Recent Developments , 2008 .

[19]  Mamta Pandey,et al.  Mobile APP development based on agility function , 2018, Ingénierie des Systèmes d Inf..

[20]  V. Mahajan,et al.  Innovation diffusion and new product growth models: A critical review and research directions , 2010 .

[21]  R. Litoriya,et al.  Mobile applications in context of big data: A survey , 2016, 2016 Symposium on Colossal Data Analysis and Networking (CDAN).

[22]  Prateek Pandey,et al.  Forecasting using Fuzzy Time Series for Diffusion of Innovation: Case of Tata Nano Car in India , 2013 .

[23]  Mamta Pandey,et al.  Perception-Based Classification of Mobile Apps: A Critical Review , 2019, Smart Computational Strategies: Theoretical and Practical Aspects.

[24]  Mamta Pandey,et al.  An ISM Approach for Modeling the Issues and Factors of Mobile App Development , 2018, Int. J. Softw. Eng. Knowl. Eng..

[25]  J. Buckley Ranking alternatives using fuzzy numbers , 1985 .

[26]  James J. Buckley,et al.  Fuzzy hierarchical analysis: the Lambda-Max method , 2001, Fuzzy Sets Syst..

[27]  Jyrki Wallenius,et al.  New State of MCDM in the 21st Century , 2011 .