Weak AGM postulates and strong Ramsey Test: A logical formalization

We reformulate AGM postulates for belief revision systems that may contain conditional formulas. We show that we can establish a mapping between belief revision systems and conditionals by means of the so called Ramsey Test, without incurring Gardenfors triviality result. We then derive the conditional logic BCR from our revision postulates by means of a strong version of the Ramsey Test. We give a sound and complete axiomatization of this logic with respect to its standard selection-function models semantics, and we prove its decidability. We finally show that there is an isomorphism between belief revision systems and selection function models of BCR via a representation theorem. The logic BCR provides a logical formalization of belief revision in the language of conditional logic.

[1]  Wolfgang Nejdl,et al.  Asking About Possibilities - Revision and Update Semantics for Subjunctive Queries , 1992, KR.

[2]  Wolfgang Spohn,et al.  Ordinal Conditional Functions: A Dynamic Theory of Epistemic States , 1988 .

[3]  Robert Stalnaker A Theory of Conditionals , 2019, Knowledge and Conditionals.

[4]  Hans Rott Conditionals and theory change: Revisions, expansions, and additions , 2004, Synthese.

[5]  Adam J. Grove,et al.  Two modellings for theory change , 1988, J. Philos. Log..

[6]  Horacio L. Arló Costa Epistemic conditionals, snakes and stars , 1996 .

[7]  Andreas Herzig,et al.  Conditionals: from philosophy to computer science , 1996 .

[8]  Donald Nute,et al.  Counterfactuals , 1975, Notre Dame J. Formal Log..

[9]  Laura Giordano,et al.  Iterated Belief Revision and Conditional Logic , 2002, Stud Logica.

[10]  D. Lewis Probabilities of Conditionals and Conditional Probabilities , 1976 .

[11]  P. Gärdenfors Belief Revisions and the Ramsey Test for Conditionals , 1986 .

[12]  I. Levi Iteration of conditionals and the Ramsey test , 1988, Synthese.

[13]  J. Rice A Theory of Condition , 1966 .

[14]  Hans Rott,et al.  Ifs, though, and because , 1986 .

[15]  Hans Rott,et al.  A nonmonotonic conditional logic for belief revision. Part 1: Semantics and logic of simple conditionals , 1989, The Logic of Theory Change.

[16]  Pierre-Yves Schobbens,et al.  Counterfactuals and Updates as Inverse Modalities , 1996, J. Log. Lang. Inf..

[17]  Peter Gärdenfors,et al.  On the logic of theory change: Partial meet contraction and revision functions , 1985, Journal of Symbolic Logic.

[18]  Laura Giordano,et al.  A Conditional Logic for Belief Revision , 1998, JELIA.

[19]  Gösta Grahne,et al.  Updates and Counterfactuals , 1998, J. Log. Comput..

[20]  Joseph Y. Halpern,et al.  Conditional Logics of Belief Change , 1994, AAAI.

[21]  Daniel Lehmann,et al.  Belief Revision, Revised , 1995, IJCAI.

[22]  Hirofumi Katsuno,et al.  On the Difference between Updating a Knowledge Base and Revising It , 1991, KR.

[23]  J. Pearl,et al.  On the Logic of Iterated Belief Revision , 1994, Artif. Intell..

[24]  D. Nute Topics in Conditional Logic , 1980 .

[25]  Laura Giordano,et al.  A Conditional Logic for Iterated Belief Revision , 2000, ECAI.

[26]  P G rdenfors,et al.  Knowledge in flux: modeling the dynamics of epistemic states , 1988 .

[27]  Sten Lindström,et al.  The Ramsey test revisited , 1996 .

[28]  Michael Morreau,et al.  Epistemic semantics for counterfactuals , 1992, J. Philos. Log..

[29]  Wolfgang Nejdl,et al.  The P-Systems: A Systematic Classification of Logics of Nonmonotonicity , 1991, AAAI.

[30]  Ronald Fagin,et al.  On the semantics of updates in databases , 1983, PODS.

[31]  Peter Gärdenfors Variations on the Ramsey test: More triviality results , 1987, Stud Logica.

[32]  Hirofumi Katsuno,et al.  A Unified View of Consequence Relation, Belief Revision and Conditional Logic , 1991, IJCAI.

[33]  David Makinson The Gärdenfors impossibility theorem in non-monotonic contexts , 1990, Stud Logica.