On the First Hitting Time Density of an Ornstein-Uhlenbeck Process

In this paper, we study the classical problem of the first passage hitting density of an Ornstein--Uhlenbeck process. We give two complementary (forward and backward) formulations of this problem and provide semi-analytical solutions for both. The corresponding problems are comparable in complexity. By using the method of heat potentials, we show how to reduce these problems to linear Volterra integral equations of the second kind. For small values of $t$, we solve these equations analytically by using Abel equation approximation; for larger $t$ we solve them numerically. We also provide a comparison with other known methods for finding the hitting density of interest, and argue that our method has considerable advantages and provides additional valuable insights.

[1]  V. Linetsky Computing Hitting Time Densities for CIR and OU Diffusions: Applications to Mean-Reverting Models , 2004 .

[2]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[3]  J. Horowitz Measure-valued random processes , 1985 .

[4]  Chuang Yi,et al.  On the first passage time distribution of an Ornstein–Uhlenbeck process , 2010 .

[5]  Olivier Scaillet,et al.  A correction note on the first passage time of an Ornstein-Uhlenbeck process to a boundary , 2000, Finance Stochastics.

[6]  Monique Jeanblanc,et al.  Modelling of Default Risk: An Overview , 2000 .

[7]  A. Tikhonov,et al.  Equations of Mathematical Physics , 1964 .

[8]  J. L. Pedersen,et al.  Representations of the First Hitting Time Density of an Ornstein-Uhlenbeck Process , 2005 .

[9]  Kristopher L. Kuhlman,et al.  mpmath: a Python library for arbitrary-precision floating-point arithmetic , 2017 .

[10]  Ward Whitt,et al.  An Introduction to Numerical Transform Inversion and Its Application to Probability Models , 2000 .

[11]  Artur Sepp,et al.  Filling the Gaps , 1962, Mental health.

[12]  Alexander Novikov,et al.  On Stopping Times for a Wiener Process , 1971 .

[13]  Olivier Scaillet,et al.  Path dependent options on yields in the affine term structure model , 1998, Finance Stochastics.

[14]  Marc Yor,et al.  A clarification note about hitting times densities for Ornstein-Uhlenbeck processes , 2003, Finance Stochastics.

[15]  R J Martin,et al.  Infinite product expansion of the Fokker–Planck equation with steady-state solution , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[16]  M. Smoluchowski Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen , 1906 .

[17]  L. Shepp A First Passage Problem for the Wiener Process , 1967 .

[18]  D. Duffy Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach , 2006 .

[19]  Alexander Lipton,et al.  Mathematical Methods for Foreign Exchange: A Financial Engineer's Approach , 2001 .

[20]  Shunsuke Sato,et al.  First-passage-time density and moments of the Ornstein-Uhlenbeck process , 1988 .

[21]  H. Daniels,et al.  Approximating the first crossing-time density for a curved boundary , 1996 .

[22]  C. Reisinger,et al.  Semi-analytical solution of a McKean–Vlasov equation with feedback through hitting a boundary , 2018, European Journal of Applied Mathematics.

[23]  P. Collin‐Dufresne,et al.  Do Credit Spreads Reflect Stationary Leverage Ratios , 2001 .

[24]  Liqun Wang,et al.  Boundary crossing probability for Brownian motion , 2001, Journal of Applied Probability.

[25]  L. Breiman First exit times from a square root boundary , 1967 .

[26]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[27]  Pricing and Hedging CoCos , 2015 .

[28]  Delia Coculescu,et al.  Valuation of default-sensitive claims under imperfect information , 2008, Finance Stochastics.

[29]  Peter Linz,et al.  Analytical and numerical methods for Volterra equations , 1985, SIAM studies in applied and numerical mathematics.

[30]  A. Borodin,et al.  Handbook of Brownian Motion - Facts and Formulae , 1996 .

[31]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[32]  A. Novikov,et al.  Approximations of boundary crossing probabilities for a Brownian motion , 1999 .