On the First Hitting Time Density of an Ornstein-Uhlenbeck Process
暂无分享,去创建一个
[1] V. Linetsky. Computing Hitting Time Densities for CIR and OU Diffusions: Applications to Mean-Reverting Models , 2004 .
[2] A. Einstein. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.
[3] J. Horowitz. Measure-valued random processes , 1985 .
[4] Chuang Yi,et al. On the first passage time distribution of an Ornstein–Uhlenbeck process , 2010 .
[5] Olivier Scaillet,et al. A correction note on the first passage time of an Ornstein-Uhlenbeck process to a boundary , 2000, Finance Stochastics.
[6] Monique Jeanblanc,et al. Modelling of Default Risk: An Overview , 2000 .
[7] A. Tikhonov,et al. Equations of Mathematical Physics , 1964 .
[8] J. L. Pedersen,et al. Representations of the First Hitting Time Density of an Ornstein-Uhlenbeck Process , 2005 .
[9] Kristopher L. Kuhlman,et al. mpmath: a Python library for arbitrary-precision floating-point arithmetic , 2017 .
[10] Ward Whitt,et al. An Introduction to Numerical Transform Inversion and Its Application to Probability Models , 2000 .
[11] Artur Sepp,et al. Filling the Gaps , 1962, Mental health.
[12] Alexander Novikov,et al. On Stopping Times for a Wiener Process , 1971 .
[13] Olivier Scaillet,et al. Path dependent options on yields in the affine term structure model , 1998, Finance Stochastics.
[14] Marc Yor,et al. A clarification note about hitting times densities for Ornstein-Uhlenbeck processes , 2003, Finance Stochastics.
[15] R J Martin,et al. Infinite product expansion of the Fokker–Planck equation with steady-state solution , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[16] M. Smoluchowski. Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen , 1906 .
[17] L. Shepp. A First Passage Problem for the Wiener Process , 1967 .
[18] D. Duffy. Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach , 2006 .
[19] Alexander Lipton,et al. Mathematical Methods for Foreign Exchange: A Financial Engineer's Approach , 2001 .
[20] Shunsuke Sato,et al. First-passage-time density and moments of the Ornstein-Uhlenbeck process , 1988 .
[21] H. Daniels,et al. Approximating the first crossing-time density for a curved boundary , 1996 .
[22] C. Reisinger,et al. Semi-analytical solution of a McKean–Vlasov equation with feedback through hitting a boundary , 2018, European Journal of Applied Mathematics.
[23] P. Collin‐Dufresne,et al. Do Credit Spreads Reflect Stationary Leverage Ratios , 2001 .
[24] Liqun Wang,et al. Boundary crossing probability for Brownian motion , 2001, Journal of Applied Probability.
[25] L. Breiman. First exit times from a square root boundary , 1967 .
[26] M. Abramowitz,et al. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .
[27] Pricing and Hedging CoCos , 2015 .
[28] Delia Coculescu,et al. Valuation of default-sensitive claims under imperfect information , 2008, Finance Stochastics.
[29] Peter Linz,et al. Analytical and numerical methods for Volterra equations , 1985, SIAM studies in applied and numerical mathematics.
[30] A. Borodin,et al. Handbook of Brownian Motion - Facts and Formulae , 1996 .
[31] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[32] A. Novikov,et al. Approximations of boundary crossing probabilities for a Brownian motion , 1999 .