Seasonality in submesoscale turbulence

Although the strongest ocean surface currents occur at horizontal scales of order 100 km, recent numerical simulations suggest that flows smaller than these mesoscale eddies can achieve important vertical transports in the upper ocean. These submesoscale flows, 1–100 km in horizontal extent, take heat and atmospheric gases down into the interior ocean, accelerating air–sea fluxes, and bring deep nutrients up into the sunlit surface layer, fueling primary production. Here we present observational evidence that submesoscale flows undergo a seasonal cycle in the surface mixed layer: they are much stronger in winter than in summer. Submesoscale flows are energized by baroclinic instabilities that develop around geostrophic eddies in the deep winter mixed layer at a horizontal scale of order 1–10 km. Flows larger than this instability scale are energized by turbulent scale interactions. Enhanced submesoscale activity in the winter mixed layer is expected to achieve efficient exchanges with the permanent thermocline below.

[1]  H. Stommel Determination of water mass properties of water pumped down from the Ekman layer to the geostrophic flow below. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[2]  P. Stone Frontogenesis by Horizontal Wind Deformation Fields , 1966 .

[3]  Patrice Klein,et al.  Oceanic Restratification Forced by Surface Frontogenesis , 2006 .

[4]  John Marshall,et al.  Open‐ocean convection: Observations, theory, and models , 1999 .

[5]  J. Marshall,et al.  Scales, Growth Rates, and Spectral Fluxes of Baroclinic Instability in the Ocean , 2011 .

[6]  Giulio Boccaletti,et al.  Mixed Layer Instabilities and Restratification , 2007 .

[7]  Daniele Iudicone,et al.  Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology , 2004 .

[8]  Bo Qiu,et al.  Impact of oceanic-scale interactions on the seasonal modulation of ocean dynamics by the atmosphere , 2014, Nature Communications.

[9]  E. T. Eady,et al.  Long Waves and Cyclone Waves , 1949 .

[10]  W. Blumen,et al.  Uniform Potential Vorticity Flow: Part I. Theory of Wave Interactions and Two-Dimensional Turbulence , 1978 .

[11]  Norman A. Phillips,et al.  Energy Transformations and Meridional Circulations associated with simple Baroclinic Waves in a two-level, Quasi-geostrophic Model , 1954 .

[12]  J. Boyd The Energy Spectrum of Fronts: Time Evolution of Shocks in Burgers , 1992 .

[13]  D. Stammer Global Characteristics of Ocean Variability Estimated from Regional TOPEX/POSEIDON Altimeter Measurements , 1997 .

[14]  Ragnar Fjørtoft,et al.  On the Changes in the Spectral Distribution of Kinetic Energy for Twodimensional, Nondivergent Flow , 1953 .

[15]  G. Vallis Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation , 2017 .

[16]  J. McWilliams,et al.  Properties of Steady Geostrophic Turbulence with Isopycnal Outcropping , 2012 .

[17]  J. Holton Geophysical fluid dynamics. , 1983, Science.

[18]  J. McWilliams,et al.  Mesoscale to Submesoscale Transition in the California Current System. Part I: Flow Structure, Eddy Flux, and Observational Tests , 2008 .

[19]  Patrice Klein,et al.  The oceanic vertical pump induced by mesoscale and submesoscale turbulence. , 2009, Annual review of marine science.

[20]  Janet Sprintall,et al.  Southern Ocean mixed-layer depth from Argo float profiles , 2008 .

[21]  Thomas W. N. Haine,et al.  Gravitational, Symmetric, and Baroclinic Instability of the Ocean Mixed Layer , 1998 .

[22]  Alexander F. Shchepetkin,et al.  Procedures for offline grid nesting in regional ocean models , 2010 .

[23]  E. Campos,et al.  Submesoscale activity over the Argentinian shelf , 2008 .

[24]  Craig M. Lee,et al.  Statistics of vertical vorticity, divergence, and strain in a developed submesoscale turbulence field , 2013 .

[25]  M. Jeroen Molemaker,et al.  Gulf Stream Dynamics along the Southeastern U.S. Seaboard , 2015 .

[26]  R. Ferrari,et al.  Thermohaline variability in the upper ocean , 2000 .

[27]  Patrice Klein,et al.  Dynamics of the Upper Oceanic Layers in Terms of Surface Quasigeostrophy Theory , 2006 .

[28]  C. Leith Atmospheric Predictability and Two-Dimensional Turbulence , 1971 .

[29]  W. Blumen On Short-Wave Baroclinic Instability , 1979 .

[30]  Francis P. Bretherton,et al.  Atmospheric Frontogenesis Models: Mathematical Formulation and Solution , 1972 .

[31]  M. Juckes Quasigeostrophic Dynamics of the Tropopause , 1994 .

[32]  T. Özgökmen,et al.  Seasonality of the submesoscale dynamics in the Gulf Stream region , 2013, Ocean Dynamics.

[33]  Raffaele Ferrari,et al.  Interpreting Energy and Tracer Spectra of Upper-Ocean Turbulence in the Submesoscale Range (1–200 km) , 2013 .

[34]  Gurvan Madec,et al.  Modifications of gyre circulation by sub-mesoscale physics , 2010 .

[35]  Alexander F. Shchepetkin,et al.  The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model , 2005 .

[36]  B. Farrell,et al.  Upper-Tropospheric Synoptic-Scale Waves. Part I: Maintenance as Eady Normal Modes. , 1992 .

[37]  James C. McWilliams,et al.  Mesoscale to submesoscale transition in the California current system. Part III: Energy balance and flux , 2008 .

[38]  Raymond T. Pierrehumbert,et al.  Surface quasi-geostrophic dynamics , 1995, Journal of Fluid Mechanics.

[39]  R. Ferrari,et al.  Wave–vortex decomposition of one-dimensional ship-track data , 2014, Journal of Fluid Mechanics.

[40]  Grant M. Wagner,et al.  Comparisons of regional satellite sea surface temperature gradients derived from MODIS and AVHRR sensors , 2012 .

[41]  R. Kraichnan Inertial Ranges in Two‐Dimensional Turbulence , 1967 .