An EWMA t chart with variable sampling intervals for monitoring the process mean

This paper proposes a variable sampling interval (VSI) version of the fixed sampling interval (FSI) exponentially weighted moving average (EWMA) t chart developed by Zhang et al. for monitoring the changes in the process mean. An optimal design strategy based on the average time to signal (ATS) is presented. We determine the optimal parameters for the VSI EWMA t chart using a Markov chain approach so that the chart has the desired robustness property against errors in estimating the process standard deviation or changing standard deviation. Also, we explain how the various parameters of this VSI EWMA t chart can be computed and how the use of the VSI feature improves the statistical efficiency of the FSI EWMA t and FSI EWMA X-bar charts in terms of out-of-control ATS performances. Comparisons with the FSI EWMA t and FSI EWMA X-bar charts are performed.

[1]  James M. Lucas,et al.  Exponentially weighted moving average control schemes: Properties and enhancements , 1990 .

[2]  Smiley W. Cheng,et al.  Semicircle Control Chart for Variables Data , 1996 .

[3]  Sun Li-rong X-Bar Charts with Variable Sampling Intervals , 2009 .

[4]  James M. Lucas,et al.  Exponentially weighted moving average control schemes with variable sampling intervals , 1992 .

[5]  Charles W. Champ,et al.  Effects of Parameter Estimation on Control Chart Properties: A Literature Review , 2006 .

[6]  Douglas C. Montgomery,et al.  Introduction to Statistical Quality Control , 1986 .

[7]  Willis A. Jensen,et al.  Design issues for adaptive control charts , 2008, Qual. Reliab. Eng. Int..

[8]  Marion R. Reynolds,et al.  Shewhart x-charts with estimated process variance , 1981 .

[9]  Joseph J. Pignatiello,et al.  On Estimating X̄ Control Chart Limits , 2001 .

[10]  Giovanni Celano,et al.  Shewhart and EWMA t control charts for short production runs , 2011, Qual. Reliab. Eng. Int..

[11]  Douglas C. Montgomery,et al.  Guidelines for the application of adaptive control charting schemes , 2000 .

[12]  Sheng Zhang,et al.  A CUSUM scheme with variable sample sizes and sampling intervals for monitoring the process mean and variance , 2007, Qual. Reliab. Eng. Int..

[13]  D. A. Evans,et al.  An approach to the probability distribution of cusum run length , 1972 .

[14]  J. A. Nachlas,et al.  X charts with variable sampling intervals , 1988 .

[15]  P. Castagliola,et al.  A variable sampling interval S2-EWMA control chart for monitoring the process variance , 2007, Int. J. Technol. Manag..

[16]  Joseph J. Pignatiello,et al.  On Estimating X-bar Control Chart Limits , 2001 .

[17]  Hoang Pham,et al.  Springer Handbook of Engineering Statistics , 2023, Springer Handbooks.

[18]  Philippe Castagliola,et al.  On t and EWMA t charts for monitoring changes in the process mean , 2009, Qual. Reliab. Eng. Int..

[19]  Frederick S. Hillier,et al.  X-Bar- and R-Chart Control Limits Based on A Small Number of Subgroups , 1969 .

[20]  Charles P. Quesenberry,et al.  The Effect of Sample Size on Estimated Limits for and X Control Charts , 1993 .

[21]  Giovanni Celano,et al.  Monitoring Process Variability using EWMA , 2006 .

[22]  William H. Woodall,et al.  CUSUM charts with variable sampling intervals , 1990 .

[23]  Smiley W. Cheng,et al.  MAX CHART: COMBINING X-BAR CHART AND S CHART , 1998 .