Modeling thermal conductivity in UO2 with BeO additions as a function of microstructure

Abstract New processing methods show promise for improved thermal conductivity in UO2 by the incorporation of a highly-conducting material. Such composites are likely to have anisotropic microstructures which bring new challenges to thermal conductivity simulation but also significant potential for improvement in the thermal performance. This paper presents simulation results for the thermal conductivity of UO2/BeO composites using statistical continuum mechanics. The results successfully capture the microstructural heterogeneity and predict the corresponding anisotropic thermal properties. The application of statistical continuum mechanics to materials design makes it possible to design novel anisotropic fuel pellets with enhanced thermal conductivity in a preferred direction.

[1]  K. McCoy,et al.  Enhanced thermal conductivity oxide nuclear fuels by co-sintering with BeO: II. Fuel performance and neutronics , 2008 .

[2]  P. Corson Correlation functions for predicting properties of heterogeneous materials. I. Experimental measurement of spatial correlation functions in multiphase solids , 1974 .

[3]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .

[4]  H. Garmestani,et al.  Microstructure-sensitive design of a compliant beam , 2001 .

[5]  The evolution of probability functions in an inelasticly deforming two-phase medium , 2000 .

[6]  J. K. Fink,et al.  Thermophysical properties of uranium dioxide , 2000 .

[7]  G. A. Slack,et al.  Thermal Conductivity of BeO Single Crystals , 1971 .

[8]  Mirela Gavrilas Safety Features of Operating Light Water Reactors of Western Design , 1994 .

[9]  C. Ronchi,et al.  Thermophysical properties affecting safety and performance of nuclear fuel , 2007 .

[10]  H. S. Kamath,et al.  Classical molecular dynamics simulation of UO2 to predict thermophysical properties , 2003 .

[11]  K. H. Sarma,et al.  New processing methods to produce silicon carbide and beryllium oxide inert matrix and enhanced thermal conductivity oxide fuels , 2006 .

[12]  C. Ronchi,et al.  Thermal Conductivity of Uranium Dioxide up to 2900 K from Simultaneous Measurement of the Heat Capacity and Thermal Diffusivity. , 1999 .

[13]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[14]  H. Garmestani,et al.  Statistical continuum mechanics analysis of an elastic two-isotropic-phase composite material , 2000 .

[15]  S. Ahzi,et al.  Statistical continuum theory for large plastic deformation of polycrystalline materials , 2001 .

[16]  S. Revankar,et al.  Modeling and Measurement of Thermal Properties of Ceramic Composite Fuel for Light Water Reactors , 2008 .

[17]  V. V. Popov,et al.  Investigation of the properties of modified uranium dioxide , 2006 .

[18]  A fabrication technique for a UO2 pellet consisting of UO2 grains and a continuous W channel on the grain boundary , 2006 .

[19]  A. M. George,et al.  Thermal conductivity of uranium dioxide , 1993 .

[20]  M. Hirai,et al.  Thermal Conductivity of UO2-BeO Pellet , 1996 .

[21]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .