Energetics and kinetics of vacancy diffusion and aggregation in shocked aluminium via orbital-free density functional theory.

A possible mechanism for shock-induced failure in aluminium involves atomic vacancies diffusing through the crystal lattice and agglomerating to form voids, which continue to grow, ultimately resulting in ductile fracture. We employ orbital-free density functional theory, a linear-scaling first-principles quantum mechanics method, to study vacancy formation, diffusion, and aggregation in aluminium under shock loading conditions of compression and tension. We calculate vacancy formation and migration energies, and find that while nearest-neighbor vacancy pairs are unstable, next-nearest-neighbor vacancy pairs are stable. As the number of nearby vacancies increases, we predict that vacancy clusters preferentially grow through next-nearest-neighbor vacancies. The energetics are found to be greatly affected by expansion and compression, leading to insight as to how vacancies behave under shock conditions.

[1]  Kaushik Bhattacharya,et al.  Quasi-continuum orbital-free density-functional theory : A route to multi-million atom non-periodic DFT calculation , 2007 .

[2]  E. Kaxiras,et al.  Hydrogen embrittlement of aluminum: the crucial role of vacancies. , 2005, Physical review letters.

[3]  Michael Ortiz,et al.  Nanovoid cavitation by dislocation emission in aluminum. , 2004, Physical review letters.

[4]  A. Ragab A model for ductile fracture based on internal necking of spheroidal voids , 2004 .

[5]  Marc A. Meyers,et al.  Void growth by dislocation emission , 2004 .

[6]  Emily A. Carter,et al.  Transferable local pseudopotentials derived via inversion of the Kohn-Sham equations in a bulk environment , 2004 .

[7]  M. Kohyama,et al.  Ab initio study on divacancy binding energies in aluminum and magnesium , 2003 .

[8]  R. Rudd,et al.  Effect of stress-triaxiality on void growth in dynamic fracture of metals: a molecular dynamics study , 2003, cond-mat/0310541.

[9]  N. Govind,et al.  A generalized synchronous transit method for transition state location , 2003 .

[10]  E. Carter,et al.  Orbital-free density functional theory calculations of the properties of Al, Mg and Al–Mg crystalline phases , 2003 .

[11]  T. Mattsson,et al.  Vacancy concentration in Al from combined first-principles and model potential calculations , 2003 .

[12]  R. Cohen,et al.  Vacancy formation enthalpy at high pressures in tantalum , 2003 .

[13]  T. Mattsson,et al.  Self-diffusion rates in Al from combined first-principles and model-potential calculations. , 2002, Physical review letters.

[14]  横堀 壽光 10TH INTERNATIONAL CONFERENCE ON FRACTURE に参加して , 2002 .

[15]  E. Kaxiras,et al.  Can vacancies lubricate dislocation motion in aluminum? , 2002, Physical review letters.

[16]  Matt Probert,et al.  First-principles simulation: ideas, illustrations and the CASTEP code , 2002 .

[17]  T. Arias,et al.  Atomic-level physics of grain boundaries in bcc molybdenum , 2001 .

[18]  N. Govind,et al.  Erratum: Orbital-free kinetic-energy density functionals with a density-dependent kernel [Phys. Rev. B60, 16 350 (1999)] , 2001 .

[19]  S. G. Srinivasan,et al.  Determining the range of forces in empirical many-body potentials using first-principles calculations , 2001 .

[20]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[21]  Sandberg,et al.  Vacancies in metals: from first-principles calculations to experimental data , 2000, Physical review letters.

[22]  Emily A. Carter,et al.  Linear-scaling parallel algorithms for the first principles treatment of metals ✩ , 2000 .

[23]  N. Govind,et al.  Erratum: Orbital-free kinetic-energy functionals for the nearly free electron gas [Phys. Rev. B 58, 13 465 (1998)] , 1999 .

[24]  N. Govind,et al.  Orbital-free kinetic-energy density functionals with a density-dependent kernel , 1999 .

[25]  R. Cahn Materials science: Measures of crystal vacancies , 1999, Nature.

[26]  Emily A. Carter,et al.  Orbital-free kinetic-energy functionals for the nearly free electron gas , 1998 .

[27]  J. Belak On the nucleation and growth of voids at high strain-rates , 1998 .

[28]  S. Couturier,et al.  Spallation of metal targets subjected to intense laser shocks , 1997 .

[29]  K. Ho,et al.  Energetics of vacancy and substitutional impurities in aluminum bulk and clusters , 1997 .

[30]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[31]  Madden,et al.  Further orbital-free kinetic-energy functionals for ab initio molecular dynamics. , 1996, Physical review. B, Condensed matter.

[32]  Michael Ortiz,et al.  Ductile fracture by vacancy condensation in f.c.c. single crystals , 1996 .

[33]  Davenport,et al.  Vacancies and impurities in aluminum and magnesium. , 1995, Physical review. B, Condensed matter.

[34]  T. Hehenkamp Absolute vacancy concentrations in noble metals and some of their alloys , 1994 .

[35]  Fukai,et al.  Formation of superabundant vacancies in Pd hydride under high hydrogen pressures. , 1994, Physical review letters.

[36]  P. Madden,et al.  The dynamic structure of liquid sodium from ab initio simulation , 1994 .

[37]  Smargiassi,et al.  Orbital-free kinetic-energy functionals for first-principles molecular dynamics. , 1994, Physical review. B, Condensed matter.

[38]  F. Perrot Hydrogen-hydrogen interaction in an electron gas , 1994 .

[39]  W. Benoit,et al.  Dislocation and kink dynamics in f.c.c. metals studied by mechanical spectroscopy , 1993 .

[40]  Wang,et al.  Kinetic-energy functional of the electron density. , 1992, Physical review. B, Condensed matter.

[41]  J. Kluin Feature article formation of vacancies in noble metals and alloys , 1992 .

[42]  Yang,et al.  Formation energy and lattice relaxation for point defects in Li and Al. , 1992, Physical review. B, Condensed matter.

[43]  M. J. Gillan,et al.  The ab initio calculation of defect energetics in aluminium , 1991 .

[44]  M. Mehl,et al.  All-electron first-principles supercell total-energy calculation of the vacancy formation energy in aluminium , 1991 .

[45]  Lee,et al.  Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics. , 1991, Physical review. B, Condensed matter.

[46]  G. Gremaud,et al.  Lubrication agents of dislocation motion at very low temperature in cold-worked aluminium , 1990 .

[47]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[48]  Richard J. Needs,et al.  A pseudopotential total energy study of impurity-promoted intergranular embrittlement , 1990 .

[49]  W. Benoit,et al.  The vacancies, lubrication agents of dislocation motion in aluminium , 1989 .

[50]  M. Gillan Calculation of the vacancy formation energy in aluminium , 1989 .

[51]  P. Lippel,et al.  Positron annihilation spectroscopy of the equilibrium vacancy ensemble in aluminium , 1984 .

[52]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[53]  M J Fluss,et al.  Measurements of the vacancy formation enthalpy in aluminum using positron annihilation spectroscopy , 1978 .

[54]  R. Balluffi Vacancy defect mobilities and binding energies obtained from annealing studies , 1976 .

[55]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[56]  R. W. Bauer,et al.  VOID INITIATION IN DUCTILE FRACTURE , 1973 .

[57]  H. Mehrer,et al.  Analysis of tracer and nuclear magnetic resonance measurements of self‐diffusion in aluminium , 1971 .

[58]  M. Doyama,et al.  QUENCHING AND ANNEALING OF ZONE REFINED ALUMINUM , 1964 .

[59]  D. Turnbull,et al.  KINETICS OF VACANCY MOTION IN HIGH-PURITY ALUMINUM , 1959 .

[60]  A. Damask,et al.  Calculation of Migration and Binding Energies of Mono-, Di-, and Trivacancies in Copper with the Use of a Morse Function , 1959 .

[61]  D. Turnbull,et al.  Quenching of imperfections in aluminum , 1959 .

[62]  F. Murnaghan The Compressibility of Media under Extreme Pressures. , 1944, Proceedings of the National Academy of Sciences of the United States of America.

[63]  C. Weizsäcker Zur Theorie der Kernmassen , 1935 .

[64]  L. H. Thomas The calculation of atomic fields , 1927, Mathematical Proceedings of the Cambridge Philosophical Society.

[65]  Y. Fukai Superabundant Vacancies Formed in Metal–Hydrogen Alloys , 2003 .

[66]  Steven D. Schwartz,et al.  Theoretical methods in condensed phase chemistry , 2002 .

[67]  G. Henkelman,et al.  Methods for Finding Saddle Points and Minimum Energy Paths , 2002 .

[68]  K. Tamura,et al.  Metabolic engineering of plant alkaloid biosynthesis. Proc Natl Acad Sci U S A , 2001 .

[69]  Siegfried Schmauder,et al.  Comput. Mater. Sci. , 1998 .

[70]  Smargiassi,et al.  Free-energy calculations in solids from first-principles molecular dynamics: Vacancy formation in sodium. , 1995, Physical review. B, Condensed matter.

[71]  H. Ullmaier Atomic Defects in Metals , 1991 .

[72]  D. Kuhlmann-wilsdorf,et al.  Calculations on the Mechanical Energy of Vacancy Condensation Loops, Stacking Fault Tetrahedra, and Voids , 1967 .

[73]  G. Vineyard Frequency factors and isotope effects in solid state rate processes , 1957 .

[74]  E. Fermi Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente , 1928 .