Energetics and kinetics of vacancy diffusion and aggregation in shocked aluminium via orbital-free density functional theory.
暂无分享,去创建一个
E. Carter | K. Caspersen | M. Ong | G. Ho
[1] Kaushik Bhattacharya,et al. Quasi-continuum orbital-free density-functional theory : A route to multi-million atom non-periodic DFT calculation , 2007 .
[2] E. Kaxiras,et al. Hydrogen embrittlement of aluminum: the crucial role of vacancies. , 2005, Physical review letters.
[3] Michael Ortiz,et al. Nanovoid cavitation by dislocation emission in aluminum. , 2004, Physical review letters.
[4] A. Ragab. A model for ductile fracture based on internal necking of spheroidal voids , 2004 .
[5] Marc A. Meyers,et al. Void growth by dislocation emission , 2004 .
[6] Emily A. Carter,et al. Transferable local pseudopotentials derived via inversion of the Kohn-Sham equations in a bulk environment , 2004 .
[7] M. Kohyama,et al. Ab initio study on divacancy binding energies in aluminum and magnesium , 2003 .
[8] R. Rudd,et al. Effect of stress-triaxiality on void growth in dynamic fracture of metals: a molecular dynamics study , 2003, cond-mat/0310541.
[9] N. Govind,et al. A generalized synchronous transit method for transition state location , 2003 .
[10] E. Carter,et al. Orbital-free density functional theory calculations of the properties of Al, Mg and Al–Mg crystalline phases , 2003 .
[11] T. Mattsson,et al. Vacancy concentration in Al from combined first-principles and model potential calculations , 2003 .
[12] R. Cohen,et al. Vacancy formation enthalpy at high pressures in tantalum , 2003 .
[13] T. Mattsson,et al. Self-diffusion rates in Al from combined first-principles and model-potential calculations. , 2002, Physical review letters.
[14] 横堀 壽光. 10TH INTERNATIONAL CONFERENCE ON FRACTURE に参加して , 2002 .
[15] E. Kaxiras,et al. Can vacancies lubricate dislocation motion in aluminum? , 2002, Physical review letters.
[16] Matt Probert,et al. First-principles simulation: ideas, illustrations and the CASTEP code , 2002 .
[17] T. Arias,et al. Atomic-level physics of grain boundaries in bcc molybdenum , 2001 .
[18] N. Govind,et al. Erratum: Orbital-free kinetic-energy density functionals with a density-dependent kernel [Phys. Rev. B60, 16 350 (1999)] , 2001 .
[19] S. G. Srinivasan,et al. Determining the range of forces in empirical many-body potentials using first-principles calculations , 2001 .
[20] G. Henkelman,et al. A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .
[21] Sandberg,et al. Vacancies in metals: from first-principles calculations to experimental data , 2000, Physical review letters.
[22] Emily A. Carter,et al. Linear-scaling parallel algorithms for the first principles treatment of metals ✩ , 2000 .
[23] N. Govind,et al. Erratum: Orbital-free kinetic-energy functionals for the nearly free electron gas [Phys. Rev. B 58, 13 465 (1998)] , 1999 .
[24] N. Govind,et al. Orbital-free kinetic-energy density functionals with a density-dependent kernel , 1999 .
[25] R. Cahn. Materials science: Measures of crystal vacancies , 1999, Nature.
[26] Emily A. Carter,et al. Orbital-free kinetic-energy functionals for the nearly free electron gas , 1998 .
[27] J. Belak. On the nucleation and growth of voids at high strain-rates , 1998 .
[28] S. Couturier,et al. Spallation of metal targets subjected to intense laser shocks , 1997 .
[29] K. Ho,et al. Energetics of vacancy and substitutional impurities in aluminum bulk and clusters , 1997 .
[30] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[31] Madden,et al. Further orbital-free kinetic-energy functionals for ab initio molecular dynamics. , 1996, Physical review. B, Condensed matter.
[32] Michael Ortiz,et al. Ductile fracture by vacancy condensation in f.c.c. single crystals , 1996 .
[33] Davenport,et al. Vacancies and impurities in aluminum and magnesium. , 1995, Physical review. B, Condensed matter.
[34] T. Hehenkamp. Absolute vacancy concentrations in noble metals and some of their alloys , 1994 .
[35] Fukai,et al. Formation of superabundant vacancies in Pd hydride under high hydrogen pressures. , 1994, Physical review letters.
[36] P. Madden,et al. The dynamic structure of liquid sodium from ab initio simulation , 1994 .
[37] Smargiassi,et al. Orbital-free kinetic-energy functionals for first-principles molecular dynamics. , 1994, Physical review. B, Condensed matter.
[38] F. Perrot. Hydrogen-hydrogen interaction in an electron gas , 1994 .
[39] W. Benoit,et al. Dislocation and kink dynamics in f.c.c. metals studied by mechanical spectroscopy , 1993 .
[40] Wang,et al. Kinetic-energy functional of the electron density. , 1992, Physical review. B, Condensed matter.
[41] J. Kluin. Feature article formation of vacancies in noble metals and alloys , 1992 .
[42] Yang,et al. Formation energy and lattice relaxation for point defects in Li and Al. , 1992, Physical review. B, Condensed matter.
[43] M. J. Gillan,et al. The ab initio calculation of defect energetics in aluminium , 1991 .
[44] M. Mehl,et al. All-electron first-principles supercell total-energy calculation of the vacancy formation energy in aluminium , 1991 .
[45] Lee,et al. Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics. , 1991, Physical review. B, Condensed matter.
[46] G. Gremaud,et al. Lubrication agents of dislocation motion at very low temperature in cold-worked aluminium , 1990 .
[47] D. Vanderbilt,et al. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.
[48] Richard J. Needs,et al. A pseudopotential total energy study of impurity-promoted intergranular embrittlement , 1990 .
[49] W. Benoit,et al. The vacancies, lubrication agents of dislocation motion in aluminium , 1989 .
[50] M. Gillan. Calculation of the vacancy formation energy in aluminium , 1989 .
[51] P. Lippel,et al. Positron annihilation spectroscopy of the equilibrium vacancy ensemble in aluminium , 1984 .
[52] A. Zunger,et al. Self-interaction correction to density-functional approximations for many-electron systems , 1981 .
[53] M J Fluss,et al. Measurements of the vacancy formation enthalpy in aluminum using positron annihilation spectroscopy , 1978 .
[54] R. Balluffi. Vacancy defect mobilities and binding energies obtained from annealing studies , 1976 .
[55] H. Monkhorst,et al. SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .
[56] R. W. Bauer,et al. VOID INITIATION IN DUCTILE FRACTURE , 1973 .
[57] H. Mehrer,et al. Analysis of tracer and nuclear magnetic resonance measurements of self‐diffusion in aluminium , 1971 .
[58] M. Doyama,et al. QUENCHING AND ANNEALING OF ZONE REFINED ALUMINUM , 1964 .
[59] D. Turnbull,et al. KINETICS OF VACANCY MOTION IN HIGH-PURITY ALUMINUM , 1959 .
[60] A. Damask,et al. Calculation of Migration and Binding Energies of Mono-, Di-, and Trivacancies in Copper with the Use of a Morse Function , 1959 .
[61] D. Turnbull,et al. Quenching of imperfections in aluminum , 1959 .
[62] F. Murnaghan. The Compressibility of Media under Extreme Pressures. , 1944, Proceedings of the National Academy of Sciences of the United States of America.
[63] C. Weizsäcker. Zur Theorie der Kernmassen , 1935 .
[64] L. H. Thomas. The calculation of atomic fields , 1927, Mathematical Proceedings of the Cambridge Philosophical Society.
[65] Y. Fukai. Superabundant Vacancies Formed in Metal–Hydrogen Alloys , 2003 .
[66] Steven D. Schwartz,et al. Theoretical methods in condensed phase chemistry , 2002 .
[67] G. Henkelman,et al. Methods for Finding Saddle Points and Minimum Energy Paths , 2002 .
[68] K. Tamura,et al. Metabolic engineering of plant alkaloid biosynthesis. Proc Natl Acad Sci U S A , 2001 .
[69] Siegfried Schmauder,et al. Comput. Mater. Sci. , 1998 .
[70] Smargiassi,et al. Free-energy calculations in solids from first-principles molecular dynamics: Vacancy formation in sodium. , 1995, Physical review. B, Condensed matter.
[71] H. Ullmaier. Atomic Defects in Metals , 1991 .
[72] D. Kuhlmann-wilsdorf,et al. Calculations on the Mechanical Energy of Vacancy Condensation Loops, Stacking Fault Tetrahedra, and Voids , 1967 .
[73] G. Vineyard. Frequency factors and isotope effects in solid state rate processes , 1957 .
[74] E. Fermi. Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente , 1928 .