Performance Evaluation of Machine Learning Methods in Cultural Modeling

Cultural modeling (CM) is an emergent and promising research area in social computing. It aims to develop behavioral models of human groups and analyze the impact of culture factors on human group behavior using computational methods. Machine learning methods, in particular classification, play a critical role in such applications. Since various cultural-related data sets possess different characteristics, it is important to gain a computational understanding of performance characteristics of various machine learning methods. In this paper, we investigate the performance of seven representative classification algorithms using a benchmark cultural modeling data set and analyze the experimental results as to group behavior forecasting.

[1]  Luis Enrique Sucar,et al.  Learning an Optimal Naive Bayes Classifier , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[2]  Diego Reforgiato Recupero,et al.  CARA: A Cultural-Reasoning Architecture , 2007, IEEE Intelligent Systems.

[3]  V. Vapnik The Support Vector Method of Function Estimation , 1998 .

[4]  Jian Pei,et al.  CMAR: accurate and efficient classification based on multiple class-association rules , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[5]  Dana S. Nau,et al.  Computational Cultural Dynamics , 2008, IEEE Intelligent Systems.

[6]  Wenji Mao,et al.  Social Computing: From Social Informatics to Social Intelligence , 2007, IEEE Intell. Syst..

[7]  Dunja Mladenic,et al.  Data Sparsity Issues in the Collaborative Filtering Framework , 2005, WEBKDD.

[8]  JapkowiczNathalie,et al.  The class imbalance problem: A systematic study , 2002 .

[9]  Nathalie Japkowicz,et al.  The Class Imbalance Problem: Significance and Strategies , 2000 .

[10]  Jiawei Han,et al.  CPAR: Classification based on Predictive Association Rules , 2003, SDM.

[11]  Fadi A. Thabtah,et al.  A review of associative classification mining , 2007, The Knowledge Engineering Review.

[12]  Nathalie Japkowicz,et al.  The class imbalance problem: A systematic study , 2002, Intell. Data Anal..

[13]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[14]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[15]  Samir Khuller,et al.  Finding Most Probable Worlds of Probabilistic Logic Programs , 2007, SUM.

[16]  Sotiris B. Kotsiantis,et al.  Machine learning: a review of classification and combining techniques , 2006, Artificial Intelligence Review.

[17]  Fei-Yue Wang,et al.  Toward a Paradigm Shift in Social Computing: The ACP Approach , 2007, IEEE Intell. Syst..

[18]  Longbing Cao,et al.  Actionable Knowledge Discovery , 2009 .

[19]  Anil K. Jain,et al.  Artificial Neural Networks: A Tutorial , 1996, Computer.

[20]  V S Subrahmanian Computer science. Cultural modeling in real time. , 2007, Science.

[21]  Rish,et al.  An analysis of data characteristics that affect naive Bayes performance , 2001 .

[22]  V. S. Subrahmanian Cultural Modeling in Real Time , 2007, Science.

[23]  Ron Kohavi,et al.  Bias Plus Variance Decomposition for Zero-One Loss Functions , 1996, ICML.

[24]  R. Barandelaa,et al.  Strategies for learning in class imbalance problems , 2003, Pattern Recognit..

[25]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[26]  Charles X. Ling,et al.  AUC: A Better Measure than Accuracy in Comparing Learning Algorithms , 2003, Canadian Conference on AI.

[27]  M. Govindarajan,et al.  Text Mining Technique for Data Mining Application , 2007 .

[28]  Pedro M. Domingos,et al.  On the Optimality of the Simple Bayesian Classifier under Zero-One Loss , 1997, Machine Learning.

[29]  Doug Schuler,et al.  Social computing , 1994, CACM.

[30]  D. Hand,et al.  Idiot's Bayes—Not So Stupid After All? , 2001 .

[31]  Daniel Dajun Zeng,et al.  Guest Editors' Introduction: Social Computing , 2007, IEEE Intell. Syst..

[32]  Fei-Yue Wang,et al.  Is Culture Computable? , 2009, IEEE Intell. Syst..

[33]  Fei-Yue Wang,et al.  El Tour de Verano , 2009, IEEE Intell. Syst..

[34]  Wynne Hsu,et al.  Integrating Classification and Association Rule Mining , 1998, KDD.

[35]  V. S. Subrahmanian,et al.  CONVEX: Similarity-Based Algorithms for Forecasting Group Behavior , 2008, IEEE Intelligent Systems.

[36]  David Taniar,et al.  Domain-Driven, Actionable Knowledge Discovery , 2007, IEEE Intelligent Systems.

[37]  Elena Baralis,et al.  A lazy approach to pruning classification rules , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[38]  Philip S. Yu,et al.  Domain Driven Data Mining , 2015 .