暂无分享,去创建一个
[1] G. Sod. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .
[2] Christian Klingenberg,et al. A General Well-Balanced Finite Volume Scheme for Euler Equations with Gravity , 2016 .
[3] H. Guillard,et al. On the behaviour of upwind schemes in the low Mach number limit , 1999 .
[4] Alberto Guardone,et al. Roe linearization for the van der Waals gas , 2002 .
[5] S. Mishra,et al. Well-balanced schemes for the Euler equations with gravitation , 2014, J. Comput. Phys..
[6] V. Guinot. Approximate Riemann Solvers , 2010 .
[7] Yulong Xing,et al. Well-Balanced Discontinuous Galerkin Methods for the Euler Equations Under Gravitational Fields , 2015, J. Sci. Comput..
[8] E. Toro,et al. Restoration of the contact surface in the HLL-Riemann solver , 1994 .
[9] Francis X. Giraldo,et al. A study of spectral element and discontinuous Galerkin methods for the Navier-Stokes equations in nonhydrostatic mesoscale atmospheric modeling: Equation sets and test cases , 2008, J. Comput. Phys..
[10] Randall J. LeVeque,et al. A Well-Balanced Path-Integral f-Wave Method for Hyperbolic Problems with Source Terms , 2011, J. Sci. Comput..
[11] Jun Luo,et al. A Well-Balanced Symplecticity-Preserving Gas-Kinetic Scheme for Hydrodynamic Equations under Gravitational Field , 2011, SIAM J. Sci. Comput..
[12] Christian Klingenberg,et al. A Well-Balanced Scheme for the Euler Equation with a Gravitational Potential , 2014 .
[13] S. Osher,et al. Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .
[14] Christian Klingenberg,et al. A well‐balanced scheme to capture non‐explicit steady states in the Euler equations with gravity , 2016 .
[15] Philip L. Roe,et al. Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks , 2009, J. Comput. Phys..
[16] Emil M. Constantinescu,et al. Well-Balanced Formulation of Gravitational Source Terms for Conservative Finite-Difference Atmospheric Flow Solvers , 2015 .
[17] Yulong Xing,et al. High Order Well-Balanced WENO Scheme for the Gas Dynamics Equations Under Gravitational Fields , 2013, J. Sci. Comput..
[18] T. N. Stevenson,et al. Fluid Mechanics , 2021, Nature.
[19] Roger Käppeli,et al. A Well-Balanced Scheme for the Euler Equations with Gravitation , 2017 .
[20] Randall J. LeVeque,et al. Wave Propagation Methods for Conservation Laws with Source Terms , 1999 .
[21] P. Roe. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .
[22] W. Mccrea. An Introduction to the Study of Stellar Structure , 1939, Nature.
[23] S. Mishra,et al. High order well-balanced finite volume schemes for simulating wave propagation in stratified magnetic atmospheres , 2010, J. Comput. Phys..
[24] Emil M. Constantinescu,et al. Well-Balanced, Conservative Finite Difference Algorithm for Atmospheric Flows , 2016 .
[25] Praveen Chandrashekar,et al. Well-Balanced Nodal Discontinuous Galerkin Method for Euler Equations with Gravity , 2015, J. Sci. Comput..
[26] William C. Skamarock,et al. Efficiency and Accuracy of the Klemp-Wilhelmson Time-Splitting Technique , 1994 .
[27] Christian Klingenberg,et al. Well-Balanced Unstaggered Central Schemes for the Euler Equations with Gravitation , 2016, SIAM J. Sci. Comput..