A Second Order Well-Balanced Finite Volume Scheme for Euler Equations with Gravity

We present a well-balanced, second order, Godunov-type finite volume scheme for compressible Euler equations with gravity. By construction, the scheme admits a discrete stationary solution which is a second order accurate approximation to the exact stationary solution. Such a scheme is useful for problems involving complex equations of state and/or hydrostatic solutions which are not known in closed form expression. No \'a priori knowledge of the hydrostatic solution is required to achieve the well-balanced property. The performance of the scheme is demonstrated on several test cases in terms of preservation of hydrostatic solution and computation of small perturbations around a hydrostatic solution.

[1]  G. Sod A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .

[2]  Christian Klingenberg,et al.  A General Well-Balanced Finite Volume Scheme for Euler Equations with Gravity , 2016 .

[3]  H. Guillard,et al.  On the behaviour of upwind schemes in the low Mach number limit , 1999 .

[4]  Alberto Guardone,et al.  Roe linearization for the van der Waals gas , 2002 .

[5]  S. Mishra,et al.  Well-balanced schemes for the Euler equations with gravitation , 2014, J. Comput. Phys..

[6]  V. Guinot Approximate Riemann Solvers , 2010 .

[7]  Yulong Xing,et al.  Well-Balanced Discontinuous Galerkin Methods for the Euler Equations Under Gravitational Fields , 2015, J. Sci. Comput..

[8]  E. Toro,et al.  Restoration of the contact surface in the HLL-Riemann solver , 1994 .

[9]  Francis X. Giraldo,et al.  A study of spectral element and discontinuous Galerkin methods for the Navier-Stokes equations in nonhydrostatic mesoscale atmospheric modeling: Equation sets and test cases , 2008, J. Comput. Phys..

[10]  Randall J. LeVeque,et al.  A Well-Balanced Path-Integral f-Wave Method for Hyperbolic Problems with Source Terms , 2011, J. Sci. Comput..

[11]  Jun Luo,et al.  A Well-Balanced Symplecticity-Preserving Gas-Kinetic Scheme for Hydrodynamic Equations under Gravitational Field , 2011, SIAM J. Sci. Comput..

[12]  Christian Klingenberg,et al.  A Well-Balanced Scheme for the Euler Equation with a Gravitational Potential , 2014 .

[13]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[14]  Christian Klingenberg,et al.  A well‐balanced scheme to capture non‐explicit steady states in the Euler equations with gravity , 2016 .

[15]  Philip L. Roe,et al.  Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks , 2009, J. Comput. Phys..

[16]  Emil M. Constantinescu,et al.  Well-Balanced Formulation of Gravitational Source Terms for Conservative Finite-Difference Atmospheric Flow Solvers , 2015 .

[17]  Yulong Xing,et al.  High Order Well-Balanced WENO Scheme for the Gas Dynamics Equations Under Gravitational Fields , 2013, J. Sci. Comput..

[18]  T. N. Stevenson,et al.  Fluid Mechanics , 2021, Nature.

[19]  Roger Käppeli,et al.  A Well-Balanced Scheme for the Euler Equations with Gravitation , 2017 .

[20]  Randall J. LeVeque,et al.  Wave Propagation Methods for Conservation Laws with Source Terms , 1999 .

[21]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[22]  W. Mccrea An Introduction to the Study of Stellar Structure , 1939, Nature.

[23]  S. Mishra,et al.  High order well-balanced finite volume schemes for simulating wave propagation in stratified magnetic atmospheres , 2010, J. Comput. Phys..

[24]  Emil M. Constantinescu,et al.  Well-Balanced, Conservative Finite Difference Algorithm for Atmospheric Flows , 2016 .

[25]  Praveen Chandrashekar,et al.  Well-Balanced Nodal Discontinuous Galerkin Method for Euler Equations with Gravity , 2015, J. Sci. Comput..

[26]  William C. Skamarock,et al.  Efficiency and Accuracy of the Klemp-Wilhelmson Time-Splitting Technique , 1994 .

[27]  Christian Klingenberg,et al.  Well-Balanced Unstaggered Central Schemes for the Euler Equations with Gravitation , 2016, SIAM J. Sci. Comput..