Prescribed Gauss curvature problem on singular surfaces

We study the existence of at least one conformal metric of prescribed Gaussian curvature on a closed surface $$\Sigma $$Σ admitting conical singularities of orders $$\alpha _i$$αi’s at points $$p_i$$pi’s. In particular, we are concerned with the case where the prescribed Gaussian curvature is sign-changing. Such a geometrical problem reduces to solving a singular Liouville equation. By employing a min–max scheme jointly with a finite dimensional reduction method, we deduce new perturbative results providing existence when the quantity $$\chi (\Sigma )+\sum _i \alpha _i$$χ(Σ)+∑iαi approaches a positive even integer, where $$\chi (\Sigma )$$χ(Σ) is the Euler characteristic of the surface $$\Sigma $$Σ.

[1]  Congming Li,et al.  A priori estimates for prescribing scalar curvature equations , 1997 .

[2]  A. Malchiodi,et al.  Supercritical conformal metrics on surfaces with conical singularities , 2011 .

[3]  A. Carlotto On the solvability of singular Liouville equations on compact surfaces of arbitrary genus , 2011, 1111.5001.

[4]  Congming Li,et al.  A priori estimate for the Nirenberg problem , 2008 .

[5]  Changshou Lin,et al.  Uniqueness and symmetry results for solutions of a mean field equation on 𝕊2 via a new bubbling phenomenon , 2011 .

[6]  M. Pino,et al.  Large conformal metrics with prescribed sign-changing Gauss curvature , 2014, Calculus of Variations and Partial Differential Equations.

[7]  A. Malchiodi,et al.  New Improved Moser–Trudinger Inequalities and Singular Liouville Equations on Compact Surfaces , 2010, 1007.3861.

[8]  G. Tarantello Analytical, geometrical and topological aspects of a class of mean field equations on surfaces , 2010 .

[9]  Singular mean field equations on compact Riemann surfaces , 2012, 1210.6162.

[10]  D. Bartolucci,et al.  Blow‐up analysis, existence and qualitative properties of solutions for the two‐dimensional Emden–Fowler equation with singular potential , 2007 .

[11]  Yanyan Li On a singularly perturbed elliptic equation , 1997, Advances in Differential Equations.

[12]  Thierry Aubin,et al.  Nonlinear analysis on manifolds, Monge-Ampère equations , 1982 .

[13]  D. Panov,et al.  Spherical Metrics with Conical Singularities on a 2-Sphere: Angle Constraints , 2015, 1505.01994.

[14]  F. W. Warner,et al.  Curvature Functions for Compact 2-Manifolds , 1974 .

[15]  D. Ruiz,et al.  Compactness, existence and multiplicity for the singular mean field problem with sign-changing potentials , 2016, Journal de Mathématiques Pures et Appliquées.

[16]  T. D’Aprile Multiple Blow-Up Solutions for the Liouville Equation with Singular Data , 2012, 1210.6270.

[17]  S. Chang,et al.  Prescribing Gaussian curvature on S2 , 1987 .

[18]  Weighted barycentric sets and singular Liouville equations on compact surfaces , 2011, 1105.2363.

[19]  P. Esposito,et al.  Equilibria of point-vortices on closed surfaces , 2015, 1502.05579.

[20]  Congming Li,et al.  A necessary and sufficient condition for the nirenberg problem , 1995 .

[21]  B. Dundas,et al.  DIFFERENTIAL TOPOLOGY , 2002 .

[22]  Paul Yang,et al.  Conformal deformation of metrics on $S^2$ , 1988 .

[23]  Marc Troyanov,et al.  Metrics of constant curvature on a sphere with two conical singularities , 1989 .

[24]  A. Eremenko Metrics of positive curvature with conic singularities on the sphere , 2002, math/0208025.

[25]  Francesca De Marchis,et al.  Existence and non existence results for the singular Nirenberg problem , 2015, 1507.08090.

[26]  M. Struwe,et al.  “Large” conformal metrics of prescribed Gauss curvature on surfaces of higher genus , 2015 .

[27]  Chiun-Chuan Chen,et al.  Mean Field Equation of Liouville Type with Singular Data: Topological Degree , 2015 .

[28]  M. Troyanov Prescribing curvature on compact surfaces with conical singularities , 1991 .

[29]  D. Bartolucci,et al.  Liouville Type Equations with Singular Data¶and Their Applications to Periodic Multivortices¶for the Electroweak Theory , 2002 .

[30]  Riemannian structures of prescribed Gaussian curvature for compact 2-manifolds , 1971 .

[31]  M. Pino,et al.  Singular limits in Liouville-type equations , 2005 .