Comparison of Short-Wavelength Reduced-Illuminance and Conventional Autofluorescence Imaging in Stargardt Macular Dystrophy

[1]  S. Sadda,et al.  COMPARISON OF MANUAL AND SEMIAUTOMATED FUNDUS AUTOFLUORESCENCE ANALYSIS OF MACULAR ATROPHY IN STARGARDT DISEASE PHENOTYPE , 2016, Retina.

[2]  J. Sahel,et al.  The Natural History of the Progression of Atrophy Secondary to Stargardt Disease (ProgStar) Studies: Design and Baseline Characteristics: ProgStar Report No. 1. , 2016, Ophthalmology.

[3]  Hendrik P N Scholl,et al.  Assessment of estimated retinal atrophy progression in Stargardt macular dystrophy using spectral-domain optical coherence tomography , 2015, British Journal of Ophthalmology.

[4]  C. Klaver,et al.  Causes and consequences of inherited cone disorders , 2014, Progress in Retinal and Eye Research.

[5]  K. Tsubota,et al.  A longitudinal study of Stargardt disease: quantitative assessment of fundus autofluorescence, progression, and genotype correlations. , 2013, Investigative ophthalmology & visual science.

[6]  R. Molday,et al.  ABCA4 is an N-retinylidene-phosphatidylethanolamine and phosphatidylethanolamine importer , 2012, Nature Communications.

[7]  R. T. Smith,et al.  Quantitative measurements of autofluorescence with the scanning laser ophthalmoscope. , 2011, Investigative ophthalmology & visual science.

[8]  Netan Choudhry,et al.  Fundus Autofluorescence in Geographic Atrophy: A Review , 2010, Seminars in ophthalmology.

[9]  Donald C Hood,et al.  A comparison of fundus autofluorescence and retinal structure in patients with Stargardt disease. , 2009, Investigative ophthalmology & visual science.

[10]  F. Ferris,et al.  Report from the NEI/FDA Ophthalmic Clinical Trial Design and Endpoints Symposium. , 2008, Investigative ophthalmology & visual science.

[11]  T. Aleman,et al.  Reduced-illuminance autofluorescence imaging in ABCA4-associated retinal degenerations. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[12]  Alexander Sumaroka,et al.  In vivo dynamics of retinal injury and repair in the rhodopsin mutant dog model of human retinitis pigmentosa. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[13]  G. Travis,et al.  Biosynthesis of a major lipofuscin fluorophore in mice and humans with ABCR-mediated retinal and macular degeneration. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[14]  K. Nakanishi,et al.  The lipofuscin fluorophore A2E mediates blue light-induced damage to retinal pigmented epithelial cells. , 2000, Investigative ophthalmology & visual science.

[15]  J. Lupski,et al.  A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Starqardt macular dystrophy , 1997, Nature Genetics.

[16]  F W Fitzke,et al.  Distribution of fundus autofluorescence with a scanning laser ophthalmoscope. , 1995, The British journal of ophthalmology.

[17]  C K Dorey,et al.  In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. , 1995, Investigative ophthalmology & visual science.

[18]  M. Boulton,et al.  Lipofuscin is a photoinducible free radical generator. , 1993, Journal of photochemistry and photobiology. B, Biology.