Paleoproterozoic S-type granites in the Helanshan Complex , 1 Khondalite Belt , North China Craton : Implications for rapid 2 sediment recycling during slab breakoff 3 4 5

[1]  J. Wu,et al.  North Qinling Terrain as a provenance of Kuanping Group: LA-ICP-MS U-Pb Geochronology of detrital zircons , 2017 .

[2]  Li Tang,et al.  Paleoproterozoic crustal growth in the North China Craton: Evidence from the Lüliang Complex , 2015 .

[3]  D. Wyman,et al.  Transition from oceanic to continental lithosphere subduction in southern Tibet: Evidence from the Late Cretaceous-Early Oligocene (~ 91-30 Ma) intrusive rocks in the Chanang-Zedong area, southern Gangdese , 2014 .

[4]  D. Wyman,et al.  Petrogenesis of the Early Eocene adakitic rocks in the Napuri area, southern Lhasa: Partial melting of thickened lower crust during slab break-off and implications for crustal thickening in southern Tibet , 2014 .

[5]  Qiang Wang,et al.  Neoproterozoic S-type granites in the Alxa Block, westernmost North China and tectonic implications: In situ zircon U-Pb-Hf-O isotopic and geochemical constraints , 2014, American Journal of Science.

[6]  Guochun Zhao Precambrian Evolution of the North China Craton , 2013 .

[7]  Dunyi Liu,et al.  Is the Ordos Block Archean or Paleoproterozoic in age? Implications for the Precambrian evolution of the North China Craton , 2013, American Journal of Science.

[8]  B. Goscombe,et al.  Continental Growth and Recycling in Convergent Orogens with Large Turbidite Fans on Oceanic Crust , 2013 .

[9]  Guochun Zhao,et al.  Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications , 2013 .

[10]  Dunyi Liu,et al.  Paleoproterozoic accretionary orogenesis in the North China Craton: A SHRIMP zircon study , 2013 .

[11]  San-zhong Li,et al.  Petrology and metamorphic P-T path of high-pressure mafic granulites from the Jiaobei massif in the Jiao-Liao-Ji Belt, North China Craton , 2012 .

[12]  Xian‐Hua Li,et al.  Integrated in situ zircon U–Pb age and Hf–O isotopes for the Helanshan khondalites in North China Craton: Juvenile crustal materials deposited in active or passive continental margin? , 2012 .

[13]  Guochun Zhao,et al.  Precambrian geology of China: Preface , 2012 .

[14]  B. Windley,et al.  UHT sapphirine granulite metamorphism at 1.93–1.92 Ga caused by gabbronorite intrusions: Implications for tectonic evolution of the northern margin of the North China Craton , 2012 .

[15]  Šoštarić Sibila Borojević,et al.  Tectonothermal history of the basement rocks within the NW Dinarides: new40 Ar/39 Ar ages and synthesis , 2012 .

[16]  Peter A. Cawood,et al.  Precambrian geology of China , 2012 .

[17]  M. Santosh,et al.  Spinel + quartz-bearing ultrahigh-temperature granulites from Xumayao, Inner Mongolia Suture Zone, North China Craton: Petrology, phase equilibria and counterclockwise p-T path , 2012 .

[18]  M. Wilson,et al.  The Himalayan leucogranites: Constraints on the nature of their crustal source region and geodynamic setting , 2012 .

[19]  Guochun Zhao,et al.  Zircons U-Pb and Lu-Hf isotopic and whole-rock geochemical constraints on the Gantaohe Group in the Zanhuang Complex: Implications for the tectonic evolution of the Trans-North China Orogen , 2012 .

[20]  Guochun Zhao,et al.  Palaeoproterozoic tectonothermal evolution and deep crustal processes in the Jiao‐Liao‐Ji Belt, North China Craton: a review , 2011 .

[21]  Xu-Ping Li,et al.  Geochronology of khondalite-series rocks of the Jining Complex: confirmation of depositional age and tectonometamorphic evolution of the North China craton , 2011 .

[22]  M. Santosh,et al.  The early Precambrian odyssey of the North China Craton: A synoptic overview , 2011 .

[23]  Jin-Hui Yang,et al.  U-Pb and Hf isotopic study of detrital zircons from the Hutuo group in the Trans-North China Orogen and tectonic implications , 2011 .

[24]  B. Windley,et al.  Halaqin volcano-sedimentary succession in the central-northern margin of the North China Craton: Products of Late Paleoproterozoic ridge subduction , 2011 .

[25]  F. Wang,et al.  Petrology and metamorphism of khondalites from the Jining complex, North China craton , 2011 .

[26]  W. Bleeker,et al.  Paleoproterozoic gabbronoritic and granitic magmatism in the northern margin of the North China craton: Evidence of crust–mantle interaction , 2010 .

[27]  S. Wilde,et al.  Tectonic setting and significance of 2.3-2.1Ga magmatic events in the Trans-North China Orogen: New constraints from the Yanmenguan mafic-ultramafic intrusion in the Hengshan-Wutai-Fuping area , 2010 .

[28]  Peter A. Cawood,et al.  Single zircon grains record two Paleoproterozoic collisional events in the North China Craton , 2010 .

[29]  M. Santosh,et al.  First application of the revised Ti-in-zircon geothermometer to Paleoproterozoic ultrahigh-temperature granulites of Tuguiwula, Inner Mongolia, North China Craton , 2010 .

[30]  Q. Zhang,et al.  Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record , 2009 .

[31]  Dunyi Liu,et al.  Anatomy of Zircons from an Ultrahot Orogen: The Amalgamation of the North China Craton within the Supercontinent Columbia , 2009, The Journal of Geology.

[32]  S. Turner,et al.  Similarities between mantle-derived A-type granites and voluminous rhyolites in continental flood basalt provinces , 2009, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[33]  Yigang Xu,et al.  Eocene break-off of the Neo-Tethyan slab as inferred from intraplate-type mafic dykes in the Gaoligong orogenic belt, eastern Tibet , 2008 .

[34]  G. Lister,et al.  Configuration of the Late Paleoproterozoic Supercontinent Columbia: Insights from radiating mafic dyke swarms , 2008 .

[35]  M. Keskin,et al.  Petrology and geochemistry of post-collisional Middle Eocene volcanic units in North-Central Turkey: Evidence for magma generation by slab breakoff following the closure of the Northern Neotethys Ocean , 2008 .

[36]  W. Collins,et al.  Geodynamic significance of S-type granites in circum-Pacific orogens , 2008 .

[37]  D. Stockli,et al.  Dynamic Magma Systems, Crustal Recycling, and Alteration in the Central Sierra Nevada Batholith: the Oxygen Isotope Record , 2008 .

[38]  San-zhong Li,et al.  A comparison of U–Pb and Hf isotopic compositions of detrital zircons from the North and South Liaohe Groups: Constraints on the evolution of the Jiao-Liao-Ji Belt, North China Craton , 2008 .

[39]  Guochun Zhao,et al.  Precambrian metamorphic basement and sedimentary cover of the North China Craton: A review , 2008 .

[40]  S. Wilde,et al.  Timing of Paleoproterozoic ultrahigh-temperature metamorphism in the North China Craton: Evidence from SHRIMP U–Pb zircon geochronology , 2007 .

[41]  San-zhong Li,et al.  SHRIMP U–Pb zircon geochronology of the Liaoji granitoids: Constraints on the evolution of the Paleoproterozoic Jiao-Liao-Ji belt in the Eastern Block of the North China Craton , 2007 .

[42]  C. Hawkesworth,et al.  Linking granulites, silicic magmatism, and crustal growth in arcs: Ion microprobe (zircon) U-Pb ages from the Hidaka metamorphic belt, Japan , 2007 .

[43]  T. Kusky,et al.  The Paleoproterozoic North Hebei Orogen: North China craton's collisional suture with the Columbia supercontinent , 2007 .

[44]  P. Monié,et al.  Late Paleoproterozoic (1900–1800Ma) nappe stacking and polyphase deformation in the Hengshan–Wutaishan area: Implications for the understanding of the Trans-North-China Belt, North China Craton , 2007 .

[45]  M. Santosh,et al.  Discovery of sapphirine-bearing Mg–Al granulites in the North China Craton: Implications for Paleoproterozoic ultrahigh temperature metamorphism , 2007 .

[46]  E. Watson,et al.  Pre-eruption recharge of the Bishop magma system , 2007 .

[47]  W. Griffin,et al.  Comment: Hf-isotope heterogeneity in zircon 91500 , 2006 .

[48]  Guochun Zhao,et al.  U-Pb and Hf isotopic study of detrital zircons from the Wulashan khondalites: Constraints on the evolution of the Ordos Terrane, Western Block of the North China Craton , 2006 .

[49]  M. Zhai,et al.  Sm-Nd and SHRIMP U-Pb zircon geochronology of high-pressure granulites in the Sanggan area, North China Craton: Timing of Paleoproterozoic continental collision , 2005 .

[50]  San-zhong Li,et al.  Deformation history of the Paleoproterozoic Liaohe assemblage in the eastern block of the North China Craton , 2005 .

[51]  S. Wilde,et al.  Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited , 2005 .

[52]  San-zhong Li,et al.  LA-ICP-MS U-Pb zircon ages of the Liaohe Group in the Eastern Block of the North China Craton: constraints on the evolution of the Jiao-Liao-Ji Belt , 2004 .

[53]  W. Collins,et al.  A hybrid origin for Lachlan S-type granites: the Murrumbidgee Batholith example , 2004 .

[54]  San-zhong Li,et al.  A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup , 2004 .

[55]  Yue-heng Yang,et al.  Hf isotopic compositions of the standard zircons for U-Pb dating , 2004 .

[56]  I. Franchi,et al.  Further Characterisation of the 91500 Zircon Crystal , 2004 .

[57]  Y. Liu,et al.  Precise Sm–Nd and U–Pb isotopic dating of the supergiant Shizhuyuan polymetallic deposit and its host granite, SE China , 2004, Geological Magazine.

[58]  T. Kusky,et al.  Paleoproterozoic tectonic evolution of the North China Craton , 2003 .

[59]  M. Atherton,et al.  Slab breakoff: a model for Caledonian, Late Granite syn-collisional magmatism in the orthotectonic (metamorphic) zone of Scotland and Donegal, Ireland , 2002 .

[60]  D. Visonà,et al.  Two-mica and tourmaline leucogranites from the Everest–Makalu region (Nepal–Tibet). Himalayan leucogranite genesis by isobaric heating? , 2002 .

[61]  Peter A. Cawood,et al.  Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P–T path constraints and tectonic evolution , 2001 .

[62]  G. Wei,et al.  Geochemical and Sm-Nd isotopic study of amphibolites in the Cathaysia Block, southeastern China: evidence for an extremely depleted mantle in the Paleoproterozoic , 2000 .

[63]  B. Barbarin A review of the relationships between granitoid types, their origins and their geodynamic environments , 1999 .

[64]  P. Sylvester Post-collisional strongly peraluminous granites , 1998 .

[65]  N. Harris,et al.  Experimental Constraints on Himalayan Anatexis , 1998 .

[66]  J. Montel,et al.  Partial melting of metagreywackes, Part II. Compositions of minerals and melts , 1997 .

[67]  B. Barbarin Genesis of the two main types of peraluminous granitoids , 1996 .

[68]  F. Blanckenburg,et al.  Slab breakoff: A model for syncollisional magmatism and tectonics in the Alps , 1995 .

[69]  Jinzhong Liu,et al.  The origin of khondalites: geochemical evidence from the Archean to Early Proterozoic granulite belt in the North China craton , 1992 .

[70]  A. E. Patiño Douce,et al.  Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites , 1991 .

[71]  J. Holloway,et al.  Experimental determination of the fluid-absent melting relations in the pelitic system , 1988 .

[72]  T. M. Harrison,et al.  Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types , 1983 .

[73]  R. Kretz Symbols for rock-forming minerals , 1983 .

[74]  P. H. Nixon,et al.  Sapphirine-bearing granulitcs from Labwor, Uganda , 1973, Mineralogical Magazine.

[75]  L. Jiajun,et al.  The Granite Petrogenesis in the Area of the Gaoerqi Lead-Zinc-Silver Deposit,Inner Mongolia: Constraints of Geochemistry,Zircon U-Pb Geochronology and Hf Isotope , 2016 .

[76]  R. Parrish,et al.  Contribution of crustal anatexis to the tectonic evolution of Indian crust beneath southern Tibet , 2011 .

[77]  Guochun Zhao,et al.  Helanshan high-pressure pelitic granulites: petrological evidence for collision event in the Western Block of the North China Craton , 2010 .

[78]  Yue-heng Yang,et al.  Petrogenesis and tectonic significance of the ~850 Ma Gangbian alkaline complex in South China: Evidence from in situ zircon U-Pb dating, Hf-O isotopes and whole-rock geochemistry , 2010 .

[79]  T. Kusky,et al.  Mantle dynamics of the Paleoproterozoic North China Craton: A perspective based on seismic tomography , 2010 .

[80]  Geng Yuan Late-Paleoproterozoic granite events and their geological significance in Helanshan area, Inner Mongolia: Evidence from geochronology. , 2009 .

[81]  Zhou Xi Metamorphic age of the khondalite series in the Helanshan region: Constraints on the evolution of the western block in the North China Craton. , 2009 .

[82]  Guochun Zhao Metamorphic evolution of major tectonic units in the basement of the North China Craton: Key issues and discussion , 2009 .

[83]  Yigang Xu,et al.  Lithospheric thinning and destruction of the North China Craton , 2008 .

[84]  San-zhong Li,et al.  Are the South and North Liaohe Groups of North China Craton different exotic terranes? Nd isotope constraints , 2006 .

[85]  Q. Qian,et al.  SHRIMP dating and geological significance of Late Achaean high-Mg diorite (sanukite) and hornblende-granite at Guyang of Inner Mongolia , 2005 .

[86]  K. Ludwig User's Manual for Isoplot 3.00 - A Geochronological Toolkit for Microsoft Excel , 2003 .

[87]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.