Vibrations, quanta and biology

Abstract Quantum biology is an emerging field of research that concerns itself with the experimental and theoretical exploration of non-trivial quantum phenomena in biological systems. In this tutorial overview we aim to bring out fundamental assumptions and questions in the field, identify basic design principles and develop a key underlying theme – the dynamics of quantum dynamical networks in the presence of an environment and the fruitful interplay that the two may enter. At the hand of three biological phenomena whose understanding is held to require quantum mechanical processes, namely excitation and charge transfer in photosynthetic complexes, magneto-reception in birds and the olfactory sense, we demonstrate that this underlying theme encompasses them all, thus suggesting its wider relevance as an archetypical framework for quantum biology.

[1]  G. Milburn,et al.  Vibration-enhanced quantum transport , 2009, 0909.1846.

[2]  C. Kreisbeck,et al.  Modelling of oscillations in two-dimensional echo-spectra of the Fenna–Matthews–Olson complex , 2011, 1110.1511.

[3]  Javier Prior,et al.  Efficient simulation of strong system-environment interactions. , 2010, Physical review letters.

[4]  P. Zanardi,et al.  Excitation transfer through open quantum networks: Three basic mechanisms , 2011, 1101.4808.

[5]  P. Jordan Die Physik und das Geheimnis des organischen Lebens , 1948 .

[6]  S. Lloyd,et al.  The quantum Goldilocks effect: on the convergence of timescales in quantum transport , 2011, 1111.4982.

[7]  D. Coker,et al.  Iterative linearized density matrix propagation for modeling coherent excitation energy transfer in photosynthetic light harvesting. , 2010, The Journal of chemical physics.

[8]  Jennifer C. Brookes Olfaction: the physics of how smell works? , 2011 .

[9]  Rudolph A. Marcus,et al.  Electron transfer reactions in chemistry. Theory and experiment , 1993 .

[10]  Klaus Schulten,et al.  Vibrationally assisted electron transfer mechanism of olfaction: myth or reality? , 2012, Physical chemistry chemical physics : PCCP.

[11]  Susana F. Huelga,et al.  Open Quantum Systems: An Introduction , 2011, 1104.5242.

[12]  Susana F Huelga,et al.  Noise-enhanced classical and quantum capacities in communication networks. , 2010, Physical review letters.

[13]  A. Dijkstra,et al.  The role of the environment time scale in light-harvesting efficiency and coherent oscillations , 2012 .

[14]  S. Huelga,et al.  Chain representations of open quantum systems and their numerical simulation with time-adapative density matrix renormalisation group methods , 2011, 1112.6280.

[15]  J. Cirac,et al.  Improvement of frequency standards with quantum entanglement , 1997, quant-ph/9707014.

[16]  Jinhyoung Lee,et al.  Phonon-induced dynamic resonance energy transfer , 2013, 1304.3967.

[17]  Semion K. Saikin,et al.  Probing Biological Light-Harvesting Phenomena by Optical Cavities , 2011, 1110.1386.

[18]  S. Huelga,et al.  Electronic coherence and recoherence in pigment protein complexes: The fundamental role of non-equilibrium vibrational structures , 2014 .

[19]  K. Schulten,et al.  From atomistic modeling to excitation transfer and two-dimensional spectra of the FMO light-harvesting complex. , 2011, The journal of physical chemistry. B.

[20]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[21]  J. Almeida,et al.  Computation of 2-D spectra assisted by compressed sampling , 2012, 1207.2404.

[22]  Gregory D. Scholes,et al.  Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature , 2010, Nature.

[23]  Moore,et al.  Spin squeezing and reduced quantum noise in spectroscopy. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[24]  A M Stoneham,et al.  Could humans recognize odor by phonon assisted tunneling? , 2007, Physical review letters.

[25]  J. Lambe,et al.  Molecular Vibration Spectra by Inelastic Electron Tunneling , 1968 .

[26]  C. Cantrell,et al.  Discretization in the Quasi-Continuum , 1984 .

[27]  H Rabitz,et al.  Efficient estimation of energy transfer efficiency in light-harvesting complexes. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  J. Morton,et al.  Sustained quantum coherence and entanglement in the avian compass. , 2009, Physical review letters.

[29]  N. Makri,et al.  TENSOR PROPAGATOR FOR ITERATIVE QUANTUM TIME EVOLUTION OF REDUCED DENSITY MATRICES. I: THEORY , 1995 .

[30]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[31]  M. B. Plenio,et al.  Quantum coherence in ion channels: resonances, transport and verification , 2010, 1006.3892.

[32]  Martin B Plenio,et al.  Chemical compass model for avian magnetoreception as a quantum coherent device. , 2013, Physical review letters.

[33]  J. Lambe,et al.  Molecular Vibration Spectra by Electron Tunneling , 1966 .

[34]  S. Mukamel,et al.  Exciton-migration and three-pulse femtosecond optical spectroscopies of photosynthetic antenna complexes , 1998 .

[35]  Klaus Schulten,et al.  A Biomagnetic Sensory Mechanism Based on Magnetic Field Modulated Coherent Electron Spin Motion , 1978 .

[36]  I. Kominis Erratum: Quantum Zeno effect explains magnetic-sensitive radical-ion-pair reactions [Phys. Rev. E80, 056115 (2009)] , 2010 .

[37]  Rudolph A. Marcus,et al.  Electron transfer reactions in chemistry theory and experiment , 1997 .

[38]  Dagomir Kaszlikowski,et al.  Quantum coherence and sensitivity of avian magnetoreception. , 2012, Physical review letters.

[39]  L. Turin,et al.  A method for the calculation of odor character from molecular structure. , 2002, Journal of theoretical biology.

[40]  A. Leggett,et al.  Dynamics of the dissipative two-state system , 1987 .

[41]  Yuyuan Tian,et al.  Electron–phonon interactions in atomic and molecular devices , 2012 .

[42]  Manuel Zarzo,et al.  The sense of smell: molecular basis of odorant recognition , 2007, Biological reviews of the Cambridge Philosophical Society.

[43]  P. Borwein,et al.  Polynomials and Polynomial Inequalities , 1995 .

[44]  M. Plenio,et al.  Teleportation, entanglement and thermodynamics in the quantum world , 1998 .

[45]  K. B. Whaley,et al.  Limits of quantum speedup in photosynthetic light harvesting , 2009, 0910.1847.

[46]  Thorsten Ritz,et al.  Resonance effects indicate a radical-pair mechanism for avian magnetic compass , 2004, Nature.

[47]  Vlatko Vedral,et al.  Entanglement in Quantum Information Theory , 1998, quant-ph/9804075.

[48]  R. Marcus,et al.  Variable-range hopping electron transfer through disordered bridge states: Application to DNA , 2003 .

[49]  E. Hahn,et al.  Nuclear Double Resonance in the Rotating Frame , 1962 .

[50]  N. Makri,et al.  Tensor propagator for iterative quantum time evolution of reduced density matrices. II. Numerical methodology , 1995 .

[51]  H. Quiney,et al.  Excited state coherent dynamics in light-harvesting complexes from photosynthetic marine algae , 2012 .

[52]  Emma Springate,et al.  Instantaneous mapping of coherently coupled electronic transitions and energy transfers in a photosynthetic complex using angle-resolved coherent optical wave-mixing. , 2009, Physical review letters.

[53]  Javier Prior,et al.  The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment–protein complexes , 2013, Nature Physics.

[54]  E. Hanamura,et al.  Stochastic Models of Intermediate State Interaction in Second Order Optical Processes –Stationary Response. II– , 1977 .

[55]  Tõnu Pullerits,et al.  Origin of Long-Lived Coherences in Light-Harvesting Complexes , 2012, The journal of physical chemistry. B.

[56]  Alexandra Olaya-Castro,et al.  Distribution of entanglement in light-harvesting complexes and their quantum efficiency , 2010, 1003.3610.

[57]  K. Schulten,et al.  A model for photoreceptor-based magnetoreception in birds. , 2000, Biophysical journal.

[58]  K. Schulten,et al.  Theory and Simulation of the Environmental Effects on FMO Electronic Transitions. , 2011, The journal of physical chemistry letters.

[59]  P. Nalbach,et al.  Quantum Coherence and Entanglement in Photosynthetic Light-Harvesting Complexes , 2010 .

[60]  J. M. Womick,et al.  Vibronic enhancement of exciton sizes and energy transport in photosynthetic complexes. , 2011, The journal of physical chemistry. B.

[61]  T. Renger,et al.  How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria. , 2006, Biophysical journal.

[62]  M. Plenio,et al.  Diamond-based single-molecule magnetic resonance spectroscopy , 2011, 1112.5502.

[63]  J. Cina,et al.  Studies of impulsive vibrational influence on ultrafast electronic excitation transfer. , 2012, The journal of physical chemistry. A.

[64]  U. Weiss Quantum Dissipative Systems , 1993 .

[65]  R. Silbey,et al.  Optimization of exciton trapping in energy transfer processes. , 2009, The journal of physical chemistry. A.

[66]  Animesh Datta,et al.  Highly efficient energy excitation transfer in light-harvesting complexes: The fundamental role of n , 2009, 0901.4454.

[67]  Comment on "Quantum coherence and sensitivity of avian magnetoreception". , 2013, Physical review letters.

[68]  M. Grifoni,et al.  Dynamics of the spin-boson model with a structured environment , 2004 .

[69]  P. Hore,et al.  Entanglement and sources of magnetic anisotropy in radical pair-based avian magnetoreceptors. , 2012, Physical review letters.

[70]  Ilya A. Balabin,et al.  Dynamically controlled protein tunneling paths in photosynthetic reaction centers. , 2000, Science.

[71]  J. Eisert,et al.  Area laws for the entanglement entropy - a review , 2008, 0808.3773.

[72]  C. Bardeen,et al.  The effects of connectivity, coherence, and trapping on energy transfer in simple light-harvesting systems studied using the Haken-Strobl model with diagonal disorder. , 2004, The Journal of chemical physics.

[73]  Animesh Datta,et al.  Entanglement and entangling power of the dynamics in light-harvesting complexes , 2009, 0912.0122.

[74]  Stephan Hoyer,et al.  Realistic and verifiable coherent control of excitonic states in a light-harvesting complex , 2013, 1307.4807.

[75]  M. Thoss,et al.  Semiclassical Description of Nonadiabatic Quantum Dynamics , 1997 .

[76]  Gian Giacomo Guerreschi,et al.  Motional effects on the efficiency of excitation transfer , 2010, 1002.0346.

[77]  G. Fleming,et al.  Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: reduced hierarchy equation approach. , 2009, The Journal of chemical physics.

[78]  Klaus Schulten,et al.  The effect of correlated bath fluctuations on exciton transfer. , 2011, The Journal of chemical physics.

[79]  C. Kreisbeck,et al.  High-Performance Solution of Hierarchical Equations of Motion for Studying Energy Transfer in Light-Harvesting Complexes. , 2010, Journal of chemical theory and computation.

[80]  Ilya Kuprov,et al.  Chemical compass model of avian magnetoreception , 2008, Nature.

[81]  A. Ishizaki,et al.  Quantum Dynamics of System Strongly Coupled to Low-Temperature Colored Noise Bath: Reduced Hierarchy Equations Approach , 2005 .

[82]  John H. Reina,et al.  Galactic Dynamics , 1995 .

[83]  M R Jones,et al.  Coherent nuclear dynamics at room temperature in bacterial reaction centers. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[84]  Julia Kempe,et al.  Quantum random walks: An introductory overview , 2003, quant-ph/0303081.

[85]  A. Olaya-Castro,et al.  Quantum State Tuning of Energy Transfer in a Correlated Environment , 2009, 0907.5183.

[86]  Martin B. Plenio,et al.  An introduction to entanglement measures , 2005, Quantum Inf. Comput..

[87]  Andrew P. Horsfield,et al.  The Swipe Card Model of Odorant Recognition , 2012, Sensors.

[88]  S. Huelga,et al.  Quantum dynamics of bio-molecular systems in noisy environments , 2012, 1202.1021.

[89]  J. M. Womick,et al.  Exciton coherence and energy transport in the light-harvesting dimers of allophycocyanin. , 2009, The journal of physical chemistry. B.

[90]  G. Fleming,et al.  Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer. , 2010, Physical chemistry chemical physics : PCCP.

[91]  S. Huelga,et al.  Non-Markovianity-assisted steady state entanglement. , 2011, Physical review letters.

[92]  S. Chris Borland,et al.  Behavioural evidence for use of a light-dependent magnetoreception mechanism by a vertebrate , 1992, Nature.

[93]  Alfred G. Redfield,et al.  On the Theory of Relaxation Processes , 1957, IBM J. Res. Dev..

[94]  G. M. Dyson The scientific basis of odour , 1938 .

[95]  A. Olaya-Castro,et al.  Electronic excitation dynamics in multichromophoric systems described via a polaron-representation master equation. , 2011, The Journal of chemical physics.

[96]  R. Silbey,et al.  Efficient energy transfer in light-harvesting systems, I: optimal temperature, reorganization energy and spatial–temporal correlations , 2010, 1008.2236.

[97]  Franco Nori,et al.  Rerouting excitation transfers in the Fenna-Matthews-Olson complex. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[98]  Seth Lloyd,et al.  Interplay between coherence and decoherence in LHCII photosynthetic complex , 2011, 1106.1986.

[99]  T. Renger,et al.  Normal Mode Analysis of the Spectral Density of the Fenna–Matthews–Olson Light-Harvesting Protein: How the Protein Dissipates the Excess Energy of Excitons , 2012, The journal of physical chemistry. B.

[100]  Fabrice Rappaport,et al.  Visualization of coherent nuclear motion in a membrane protein by femtosecond spectroscopy , 1993, Nature.

[101]  Gian Giacomo Guerreschi,et al.  Quantum control and entanglement in a chemical compass. , 2009, Physical review letters.

[102]  I. Kominis Quantum Zeno effect explains magnetic-sensitive radical-ion-pair reactions. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[103]  Justin R Caram,et al.  Long-lived quantum coherence in photosynthetic complexes at physiological temperature , 2010, Proceedings of the National Academy of Sciences.

[104]  Graham R Fleming,et al.  Lessons from nature about solar light harvesting. , 2011, Nature chemistry.

[105]  V. May,et al.  Charge and Energy Transfer Dynamics in Molecular Systems: MAY:CHARGE TRANSFER 3ED O-BK , 2011 .

[106]  T. Mančal,et al.  Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems , 2007, Nature.

[107]  S. Huelga,et al.  Origin of long-lived oscillations in 2D-spectra of a quantum vibronic model: electronic versus vibrational coherence. , 2013, The Journal of chemical physics.

[108]  Masoud Mohseni,et al.  Environment-assisted quantum transport , 2008, 0807.0929.

[109]  R. Knox,et al.  Theory of Molecular Excitons , 1964 .

[110]  M. B. Plenio,et al.  Dephasing-assisted transport: quantum networks and biomolecules , 2008, 0807.4902.

[111]  K. Schulten,et al.  Quest for spatially correlated fluctuations in the FMO light-harvesting complex. , 2011, The journal of physical chemistry. B.

[112]  Martin B. Plenio,et al.  Quantum limits for the magnetic sensitivity of a chemical compass , 2012 .

[113]  B Chance,et al.  Studies of photosynthesis using a pulsed laser. I. Temperature dependence of cytochrome oxidation rate in chromatium. Evidence for tunneling. , 1966, Biophysical journal.

[114]  Martin B. Plenio,et al.  A large-scale quantum simulator on a diamond surface at room temperature , 2012, Nature Physics.

[115]  Tommaso Calarco,et al.  Coherent optimal control of photosynthetic molecules , 2012 .

[116]  S. Huelga,et al.  Exploiting Structured Environments for Efficient Energy Transfer: The Phonon Antenna Mechanism. , 2012, The journal of physical chemistry letters.

[117]  J. P. Keating,et al.  Localization and its consequences for quantum walk algorithms and quantum communication , 2007 .

[118]  Milosz A. Przyjalgowski,et al.  Electron-vibrational coupling in the Fenna-Matthews-Olson complex of Prosthecochloris aestuarii determined by temperature dependent absorption and fluorescence line narrowing measurements , 2000 .

[119]  Angel Rubio,et al.  Quantum coherence controls the charge separation in a prototypical artificial light-harvesting system , 2012, Nature Communications.

[120]  W. Strunz,et al.  An efficient method to calculate excitation energy transfer in light-harvesting systems: application to the Fenna–Matthews–Olson complex , 2011, 1106.5259.

[121]  Paul Brumer,et al.  Physical Basis for Long-Lived Electronic Coherence in Photosynthetic Light-Harvesting Systems , 2011, 1107.0322.

[122]  Donatas Zigmantas,et al.  Coherent picosecond exciton dynamics in a photosynthetic reaction center. , 2012, Journal of the American Chemical Society.

[123]  S. Kais,et al.  Modified scaled hierarchical equation of motion approach for the study of quantum coherence in photosynthetic complexes. , 2010, The journal of physical chemistry. B.

[124]  G. Cerullo,et al.  Quantum coherence controls the charge separation in a prototypical artificial light harvesting system , 2013 .

[125]  R. H. Wright Odor and molecular vibration: neural coding of olfactory information. , 1977, Journal of theoretical biology.

[126]  Xavier Andrade,et al.  Compressed Sensing for Multidimensional Spectroscopy Experiments. , 2012, The journal of physical chemistry letters.

[127]  R. Egger,et al.  Erratum: Iterative real-time path integral approach to nonequilibrium quantum transport [Phys. Rev. B 77, 195316 (2008)] , 2009 .

[128]  Jeremy M Moix,et al.  Efficient energy transfer in light-harvesting systems, III: The influence of the eighth bacteriochlorophyll on the dynamics and efficiency in FMO , 2011, 1109.3416.

[129]  M B Plenio,et al.  Entangled light from white noise. , 2002, Physical review letters.

[130]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[131]  Volkhard May,et al.  Charge and Energy Transfer Dynamics in Molecular Systems: A Theoretical Introduction , 2000 .

[132]  Tommaso Calarco,et al.  Coherent open-loop optimal control of light-harvesting dynamics , 2011, 1103.0929.

[133]  Alexander Eisfeld,et al.  Influence of complex exciton-phonon coupling on optical absorption and energy transfer of quantum aggregates. , 2009, Physical review letters.

[134]  Jinhyoung Lee,et al.  Role of energy-level mismatches in a multi-pathway complex of photosynthesis , 2011, 1302.4430.

[135]  P. Rebentrost,et al.  Atomistic study of the long-lived quantum coherences in the Fenna-Matthews-Olson complex. , 2011, Biophysical journal.

[136]  R. Egger,et al.  Iterative real-time path integral approach to nonequilibrium quantum transport , 2008, 0802.3374.

[137]  I. Kassal,et al.  Environment-assisted quantum transport in ordered systems , 2012, 1201.5202.

[138]  Arvi Freiberg,et al.  Demonstration and interpretation of significant asymmetry in the low-resolution and high-resolution Q(y) fluorescence and absorption spectra of bacteriochlorophyll a. , 2011, The Journal of chemical physics.

[139]  Graham R. Fleming,et al.  Iterative path-integral algorithm versus cumulant time-nonlocal master equation approach for dissipative biomolecular exciton transport , 2011 .

[140]  V. Shuvalov,et al.  Femtosecond kinetics of electron transfer in the bacteriochlorophyllM‐modified reaction centers from Rhodobacter sphaeroides (R‐26) , 1996, FEBS letters.

[141]  Masoud Mohseni,et al.  Quantum Effects in Biology , 2019, Optics and Photonics News.

[142]  D. Coker,et al.  Iterative linearized approach to nonadiabatic dynamics. , 2008, The Journal of chemical physics.

[143]  Ahsan Nazir,et al.  Consistent treatment of coherent and incoherent energy transfer dynamics using a variational master equation. , 2011, The Journal of chemical physics.

[144]  H Rabitz,et al.  Geometrical effects on energy transfer in disordered open quantum systems. , 2012, The Journal of chemical physics.

[145]  C. J. Murray,et al.  Hydrogen tunneling in enzyme reactions. , 1989, Science.

[146]  J. Cai Quantum probe and design for a chemical compass with magnetic nanostructures. , 2010, Physical review letters.

[147]  R. Kubo,et al.  Time Evolution of a Quantum System in Contact with a Nearly Gaussian-Markoffian Noise Bath , 1989 .

[148]  T. Renger,et al.  Understanding photosynthetic light-harvesting: a bottom up theoretical approach. , 2013, Physical chemistry chemical physics : PCCP.

[149]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[150]  Paul Brumer,et al.  Computational methodologies and physical insights into electronic energy transfer in photosynthetic light-harvesting complexes. , 2012, Physical chemistry chemical physics : PCCP.

[151]  G. Fleming,et al.  Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature , 2009, Proceedings of the National Academy of Sciences.

[152]  Gerhard Stock,et al.  Mapping approach to the semiclassical description of nonadiabatic quantum dynamics , 1999 .

[153]  Animesh Datta,et al.  Noise-assisted energy transfer in quantum networks and light-harvesting complexes , 2009, 0910.4153.

[154]  S. Huelga,et al.  The nature of the low energy band of the Fenna-Matthews-Olson complex: vibronic signatures. , 2011, The Journal of chemical physics.

[155]  D. Devault,et al.  Quantum mechanical tunnelling in biological systems. , 1980, Quarterly reviews of biophysics.

[156]  T. Ritz Quantum effects in biology: Bird navigation , 2011 .

[157]  Martin B. Plenio,et al.  Exact mapping between system-reservoir quantum models and semi-infinite discrete chains using orthogonal polynomials , 2010, 1006.4507.

[158]  E. Bittner,et al.  Quantum origins of molecular recognition and olfaction in Drosophila. , 2012, The Journal of chemical physics.

[159]  M B Plenio,et al.  Computation of Two-Dimensional Spectra Assisted by Compressed Sampling. , 2012, The journal of physical chemistry letters.

[160]  William K. Peters,et al.  Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework , 2012, Proceedings of the National Academy of Sciences.

[161]  R. Silbey,et al.  Efficient energy transfer in light-harvesting systems: quantum-classical comparison, flux network, and robustness analysis. , 2011, The Journal of chemical physics.

[162]  Reimann,et al.  Iterative algorithm versus analytic solutions of the parametrically driven dissipative quantum harmonic oscillator , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[163]  T. Renger,et al.  The Eighth Bacteriochlorophyll Completes the Excitation Energy Funnel in the FMO Protein. , 2011, The journal of physical chemistry letters.

[164]  Andrew F Fidler,et al.  Real-time mapping of electronic structure with single-shot two-dimensional electronic spectroscopy , 2010, Proceedings of the National Academy of Sciences.

[165]  C. Kreisbeck,et al.  Long-Lived Electronic Coherence in Dissipative Exciton Dynamics of Light-Harvesting Complexes , 2012, 1203.1485.

[166]  Nancy Makri,et al.  Path integrals for dissipative systems by tensor multiplication. Condensed phase quantum dynamics for arbitrarily long time , 1994 .

[167]  S. Huelga,et al.  Coherence and decoherence in biological systems: principles of noise-assisted transport and the origin of long-lived coherences , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[168]  Gregory D Scholes,et al.  The fundamental role of quantized vibrations in coherent light harvesting by cryptophyte algae. , 2012, The Journal of chemical physics.

[169]  Thorsten Ritz,et al.  The mechanism of the avian magnetic compass , 2011 .

[170]  Sönke Johnsen,et al.  The physics and neurobiology of magnetoreception , 2005, Nature Reviews Neuroscience.

[171]  M. I. Franco,et al.  Molecular vibration-sensing component in Drosophila melanogaster olfaction , 2011, Proceedings of the National Academy of Sciences.

[172]  D. McCutcheon,et al.  Coherent and incoherent dynamics in excitonic energy transfer: Correlated fluctuations and off-resonance effects , 2010, 1009.3942.

[173]  A. Aspuru‐Guzik,et al.  Absence of Quantum Oscillations and Dependence on Site Energies in Electronic Excitation Transfer in the Fenna–Matthews–Olson Trimer , 2011, 1108.3452.

[174]  W. Dur,et al.  Steady-state entanglement in open and noisy quantum systems , 2006 .

[175]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[176]  J. M. Womick,et al.  Vibronic effects in the spectroscopy and dynamics of C-phycocyanin , 2012 .

[177]  WALTER GAUTSCHI Algorithm 726: ORTHPOL–a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules , 1994, TOMS.

[178]  L. Turin,et al.  A spectroscopic mechanism for primary olfactory reception. , 1996, Chemical senses.

[179]  V. Shuvalov,et al.  Coherent nuclear and electronic dynamics in primary charge separation in photosynthetic reaction centers: A redfield theory approach , 2004 .

[180]  S. Lloyd,et al.  Environment-assisted quantum walks in photosynthetic energy transfer. , 2008, The Journal of chemical physics.

[181]  Neil F. Johnson,et al.  Efficiency of energy transfer in a light-harvesting system under quantum coherence , 2007, 0708.1159.

[182]  Thorsten Ritz,et al.  Magnetic compass orientation of migratory birds in the presence of a 1.315 MHz oscillating field , 2005, Naturwissenschaften.