A note on dominating cycles in 2-connected graphs

Let G be a 2-connected graph on n vertices such that d(x) + d(y) + d(z) n for all triples of independent vertices x, y, z. We prove that every longest cycle in G is a dominating cycle unless G is a spanning subgraph of a graph belonging to one of four easily specified classes of graphs.

[1]  Rainer Bodendiek,et al.  Topics In Combinatorics and Graph Theory , 1992 .

[2]  Edward F. Schmeichel,et al.  Some recent results on long cycles in tough graphs , 1991 .

[3]  Vasek Chvátal,et al.  Tough graphs and hamiltonian circuits , 1973, Discret. Math..

[4]  Douglas Bauer,et al.  Hamiltonian properties of graphs with large neighborhood unions , 1991, Discret. Math..

[5]  Saumyendra Sengupta,et al.  Graphs and Digraphs , 1994 .

[6]  Edward F. Schmeichel,et al.  Cycles in tough graphs , 1992 .

[7]  H. A. Jung On Maximal Circuits in Finite Graphs , 1978 .

[8]  Jan van den Heuvel,et al.  Long cycles, degree sums and neighborhood unions , 1993, Discret. Math..

[9]  Henk Jan Veldman,et al.  Existence of dominating cycles and paths , 1983, Discret. Math..

[10]  L Hao ON THE CIRCUMFERENCES OF 1-TOUGH GRAPHS , 1988 .

[11]  Edward F. Schmeichel,et al.  Long cycles in graphs with large degree sums , 1990, Discret. Math..

[12]  Nathan Linial A lower bound for the circumference of a graph , 1976, Discret. Math..

[13]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[14]  Jean-Claude Bermond On hamiltonian walks , 1976 .

[15]  Mehdi Behzad,et al.  Graphs and Digraphs , 1981, The Mathematical Gazette.

[16]  Douglas Bauer,et al.  Around Three Lemmas in Hamiltonian Graph Theory , 1990 .

[17]  John Adrian Bondy,et al.  Large cycles in graphs , 1971, Discret. Math..

[18]  S. Louis Hakimi,et al.  Recognizing tough graphs is NP-hard , 1990, Discret. Appl. Math..

[19]  Douglas Bauer,et al.  On Hamiltonian properties of 2-tough graphs , 1992 .