Relativistic domain-wall dynamics in van der Waals antiferromagnet MnPS3

[1]  E. Navarro-Moratalla,et al.  Coexistence of structural and magnetic phases in van der Waals magnet CrI3 , 2021, Nature Communications.

[2]  L. Balicas,et al.  Magnetic field-induced non-trivial electronic topology in Fe3−xGeTe2 , 2021, Applied Physics Reviews.

[3]  M. Stone,et al.  Magnetic Field Effect on Topological Spin Excitations in CrI3 , 2021, Physical Review X.

[4]  K. Novoselov,et al.  Quantum Rescaling, Domain Metastability, and Hybrid Domain‐Walls in 2D CrI3 Magnets , 2020, Advanced materials.

[5]  C. Ross,et al.  Relativistic kinematics of a magnetic soliton , 2020, Science.

[6]  G. Tatara,et al.  Magnon pair emission from a relativistic domain wall in antiferromagnets , 2020, 2007.13939.

[7]  K. Novoselov,et al.  Biquadratic exchange interactions in two-dimensional magnets , 2020, npj Computational Materials.

[8]  A. Brataas,et al.  Subterahertz spin pumping from an insulating antiferromagnet , 2020, Science.

[9]  A. Yankovich,et al.  Transition metal dichalcogenide metamaterials with atomic precision , 2020, Nature Communications.

[10]  Xiaodong Xu,et al.  Layer-resolved magnetic proximity effect in van der Waals heterostructures , 2020, Nature Nanotechnology.

[11]  J. Coleman,et al.  Electronic polarizability as the fundamental variable in the dielectric properties of two-dimensional materials. , 2019, Nano letters.

[12]  A. Morpurgo,et al.  Persistence of magnetism in atomically thin MnPS3 crystals. , 2019, Nano letters.

[13]  J. Bokor,et al.  Intrinsic Controllable Magnetism of Graphene Grown on Fe , 2019, The Journal of Physical Chemistry C.

[14]  Xiaodong Xu,et al.  Direct observation of van der Waals stacking–dependent interlayer magnetism , 2019, Science.

[15]  Michael A. McGuire,et al.  Switching 2D magnetic states via pressure tuning of layer stacking , 2019, Nature Materials.

[16]  M. Fiebig,et al.  High-speed domain wall racetracks in a magnetic insulator , 2019, Nature Communications.

[17]  A. Morpurgo,et al.  Probing magnetism in 2D materials at the nanoscale with single-spin microscopy , 2019, Science.

[18]  C. Shih,et al.  Asymmetric electric field screening in van der Waals heterostructures , 2018, Nature Communications.

[19]  T. Taniguchi,et al.  Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling , 2018, Science.

[20]  Xiaodong Xu,et al.  Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures , 2018, Science.

[21]  Takashi Taniguchi,et al.  Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3 , 2018, Nature Communications.

[22]  A. Pasupathy,et al.  Magnetism in semiconducting molybdenum dichalcogenides , 2017, Science Advances.

[23]  Jingwei Wang,et al.  Isolation and Characterization of Few-Layer Manganese Thiophosphite. , 2017, ACS nano.

[24]  Byong‐Guk Park,et al.  Antiferromagnetic Domain Wall Motion Driven by Spin-Orbit Torques. , 2016, Physical review letters.

[25]  A. Lemaître,et al.  Universal Pinning Energy Barrier for Driven Domain Walls in Thin Ferromagnetic Films. , 2016, Physical review letters.

[26]  J. Wunderlich,et al.  Antiferromagnetic spintronics. , 2015, Nature nanotechnology.

[27]  Yifan Sun,et al.  Correction to transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. , 2015, Accounts of chemical research.

[28]  Ruitao Lv,et al.  Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. , 2015, Accounts of chemical research.

[29]  A. Hubert,et al.  Magnetic Domains: The Analysis of Magnetic Microstructures , 2014 .

[30]  Hideki Hirori,et al.  Antiferromagnetic resonance excitation by terahertz magnetic field resonantly enhanced with split ring resonator , 2014 .

[31]  O. Tchernyshyov,et al.  Propulsion of a domain wall in an antiferromagnet by magnons , 2014, 1406.6051.

[32]  H. Jaffrès,et al.  Spin pumping and inverse spin Hall effect in platinum: the essential role of spin-memory loss at metallic interfaces. , 2013, Physical review letters.

[33]  E. Santos Carrier-mediated magnetoelectric coupling in functionalized graphene. , 2013, ACS nano.

[34]  A. Brataas,et al.  Antiferromagnetic domain wall motion induced by spin waves. , 2013, Physical review letters.

[35]  M. Hangyo,et al.  Terahertz radiation from antiferromagnetic MnO excited by optical laser pulses , 2013 .

[36]  A. Wilkinson,et al.  Controlling the orientation, edge geometry, and thickness of chemical vapor deposition graphene. , 2013, ACS nano.

[37]  C. Berger,et al.  Exceptional ballistic transport in epitaxial graphene nanoribbons , 2013, Nature.

[38]  F. Sirotti,et al.  Direct observation of massless domain wall dynamics in nanostripes with perpendicular magnetic anisotropy. , 2012, Physical review letters.

[39]  A. Lemaître,et al.  Domain wall propagation in ferromagnetic semiconductors: Beyond the one-dimensional model , 2011, 1102.4789.

[40]  F. Nori,et al.  Spin oscillations in antiferromagnetic NiO triggered by circularly polarized light. , 2010, Physical review letters.

[41]  R. Wiesendanger,et al.  Domain wall motion damped by the emission of spin waves , 2010 .

[42]  S. Parkin,et al.  Magnetic Domain-Wall Racetrack Memory , 2008, Science.

[43]  Luc Thomas,et al.  Current driven domain wall velocities exceeding the spin angular momentum transfer rate in permalloy nanowires. , 2007, Physical review letters.

[44]  R. Pisarev,et al.  Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses , 2005, Nature.

[45]  Eiji Saitoh,et al.  Current-induced resonance and mass determination of a single magnetic domain wall , 2004, Nature.

[46]  J. Kirschner,et al.  Step-induced frustration of antiferromagnetic order in Mn on Fe(001). , 2004, Physical review letters.

[47]  Jacques Miltat,et al.  Faster magnetic walls in rough wires , 2003, Nature materials.

[48]  C. Chien,et al.  Asymmetry in elementary events of magnetization reversal in a ferromagnetic/antiferromagnetic bilayer. , 2000, Physical review letters.

[49]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[50]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[51]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[52]  Suhl,et al.  Motion of a Bloch domain wall. , 1990, Physical review letters.

[53]  F. Haldane Nonlinear Field Theory of Large-Spin Heisenberg Antiferromagnets: Semiclassically Quantized Solitons of the One-Dimensional Easy-Axis Néel State , 1983 .

[54]  R. Kubo The Spin-Wave Theory of Antiferromagnetics , 1952 .

[55]  Alfred Leitenstorfer,et al.  Coherent terahertz control of antiferromagnetic spin waves , 2011 .

[56]  T. Oguchi Theory of Spin-Wave Interactions in Ferro- and Antiferromagnetism , 1960 .