Kernel-Based Copula Processes

Kernel-based Copula Processes (KCPs), a new versatile tool for analyzing multiple time-series, are proposed here as a unifying framework to model the interdependency across multiple time-series and the long-range dependency within an individual time-series. KCPs build on the celebrated theory of copula which allows for the modeling of complex interdependence structure, while leveraging the power of kernel methods for efficient learning and parsimonious model specification. Specifically, KCPs can be viewed as a generalization of the Gaussian processes enabling non-Gaussian predictions to be made. Such non-Gaussian features are extremely important in a variety of application areas. As one application, we consider temperature series from weather stations across the US. Not only are KCPs found to have modeled the heteroskedasticity of the individual temperature changes well, the KCPs also successfully discovered the interdependencies among different stations. Such results are beneficial for weather derivatives trading and risk management, for example.

[1]  Hinrich Schütze,et al.  Book Reviews: Foundations of Statistical Natural Language Processing , 1999, CL.

[2]  H. Joe,et al.  The Estimation Method of Inference Functions for Margins for Multivariate Models , 1996 .

[3]  Andrew J. Patton Applications of copula theory in financial econometrics , 2002 .

[4]  David Barber,et al.  Bayesian Classification With Gaussian Processes , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  J. Kalbfleisch,et al.  Maximization by Parts in Likelihood Inference , 2005 .

[6]  Pedro Larrañaga,et al.  An Introduction to Probabilistic Graphical Models , 2002, Estimation of Distribution Algorithms.

[7]  Paul Embrechts,et al.  Dynamic copula models for multivariate high-frequency data in finance , 2004 .

[8]  A. Dorvlo Estimating wind speed distribution , 2002 .

[9]  R. Nelsen An Introduction to Copulas (Springer Series in Statistics) , 2006 .

[10]  J. Harrison,et al.  Martingales and stochastic integrals in the theory of continuous trading , 1981 .

[11]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[12]  K. Pearson ON A METHOD OF DETERMINING WHETHER A SAMPLE OF SIZE n SUPPOSED TO HAVE BEEN DRAWN FROM A PARENT POPULATION HAVING A KNOWN PROBABILITY INTEGRAL HAS PROBABLY BEEN DRAWN AT RANDOM , 1933 .

[13]  R. Shibata Selection of the order of an autoregressive model by Akaike's information criterion , 1976 .

[14]  L. J. Levy The Kalman Filter : Navigation ' s Integration Workhorse , 2001 .

[15]  Jean-David Fermanian,et al.  Copulas of a Vector-Valued Stationary Weakly Dependent Process , 2005 .

[16]  Zoubin Ghahramani,et al.  A Unifying Review of Linear Gaussian Models , 1999, Neural Computation.

[17]  莊哲男 Applied System Identification , 1994 .

[18]  C. Genest,et al.  Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask , 2007 .

[19]  Christine M. Anderson-Cook,et al.  Book review: quantitative risk management: concepts, techniques and tools, revised edition, by A.F. McNeil, R. Frey and P. Embrechts. Princeton University Press, 2015, ISBN 978-0-691-16627-8, xix + 700 pp. , 2017, Extremes.

[20]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[21]  P. Embrechts,et al.  Risk Management: Correlation and Dependence in Risk Management: Properties and Pitfalls , 2002 .

[22]  Soon Ki Jung,et al.  Synthesis of Human Motion Using Kalman Filter , 1998, CAPTECH.

[23]  Ali Esmaili,et al.  Probability and Random Processes , 2005, Technometrics.

[24]  D. Darling,et al.  A Test of Goodness of Fit , 1954 .

[25]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[26]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[27]  Anthony S. Tay,et al.  Evaluating Density Forecasts with Applications to Financial Risk Management , 1998 .

[28]  E. T. Olsen,et al.  Copulas and Markov processes , 1992 .

[29]  Tae-Hwy Lee,et al.  Copula-based multivariate GARCH model with uncorrelated dependent errors , 2009 .

[30]  Curt Wells The Kalman Filter in Finance , 1995 .

[31]  R. Weron Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach , 2006 .

[32]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[33]  Aarnout Brombacher,et al.  Probability... , 2009, Qual. Reliab. Eng. Int..

[34]  G. J. Babu,et al.  Statistical Challenges in Modern Astronomy , 2004 .

[35]  Jeremy Berkowitz Testing Density Forecasts, With Applications to Risk Management , 2001 .

[36]  R. Shumway,et al.  AN APPROACH TO TIME SERIES SMOOTHING AND FORECASTING USING THE EM ALGORITHM , 1982 .

[37]  Wassily Hoeffding Scale—Invariant Correlation Measures for Discontinuous Distributions , 1994 .

[38]  Markus Junker,et al.  Elliptical copulas: applicability and limitations , 2003 .

[39]  Erkki Oja,et al.  Time series prediction competition: The CATS benchmark , 2007, Neurocomputing.

[40]  Subhabrata Chakraborti,et al.  Nonparametric Statistical Inference , 2011, International Encyclopedia of Statistical Science.

[41]  Phhilippe Jorion Value at Risk: The New Benchmark for Managing Financial Risk , 2000 .

[42]  V. V. Kleiza Calculation of inverse functions by the Monte Carlo method , 1976 .

[43]  Wolfgang Breymann,et al.  Dependence structures for multivariate high-frequency data in finance , 2003 .

[44]  Xiaohong Chen,et al.  Estimation of Copula-Based Semiparametric Time Series Models , 2006 .

[45]  E. Luciano,et al.  Copula methods in finance , 2004 .

[46]  Noelle Foreshaw Options… , 2010 .

[47]  H. Rauch Solutions to the linear smoothing problem , 1963 .

[48]  Paul Fearnhead,et al.  Exact and efficient Bayesian inference for multiple changepoint problems , 2006, Stat. Comput..

[49]  Geoffrey E. Hinton,et al.  Parameter estimation for linear dynamical systems , 1996 .

[50]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[51]  B. Hansen Autoregressive Conditional Density Estimation , 1994 .

[52]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[53]  Hossein Hassani,et al.  Singular Spectrum Analysis: Methodology and Comparison , 2021, Journal of Data Science.

[54]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[55]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[56]  B. Mandlebrot The Variation of Certain Speculative Prices , 1963 .

[57]  Hans U. Gerber,et al.  Option pricing by Esscher transforms. , 1995 .

[58]  J. D. T. Oliveira,et al.  The Asymptotic Theory of Extreme Order Statistics , 1979 .

[59]  Eamonn J. Keogh,et al.  Finding surprising patterns in a time series database in linear time and space , 2002, KDD.

[60]  A.H. Haddad,et al.  Applied optimal estimation , 1976, Proceedings of the IEEE.

[61]  A. Sampson,et al.  Uniform representations of bivariate distributions , 1975 .

[62]  P. X. Song,et al.  Multivariate Dispersion Models Generated From Gaussian Copula , 2000 .

[63]  Tom Minka,et al.  A family of algorithms for approximate Bayesian inference , 2001 .

[64]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[65]  E. Fama The Behavior of Stock-Market Prices , 1965 .

[66]  R. Rockafellar,et al.  Conditional Value-at-Risk for General Loss Distributions , 2001 .

[67]  Avery Wang,et al.  An Industrial Strength Audio Search Algorithm , 2003, ISMIR.

[68]  R. C. Merton,et al.  Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[69]  Helmut Ltkepohl,et al.  New Introduction to Multiple Time Series Analysis , 2007 .

[70]  David M. Kreps,et al.  Martingales and arbitrage in multiperiod securities markets , 1979 .

[71]  Bill Ravens,et al.  An Introduction to Copulas , 2000, Technometrics.

[72]  Jonathan D. Cryer,et al.  Time Series Analysis , 1986 .

[73]  C. Genest,et al.  A Primer on Copulas for Count Data , 2007, ASTIN Bulletin.

[74]  Carlo De Michele,et al.  Extremes in Nature : an approach using Copulas , 2007 .

[75]  M. Fréchet Sur les tableaux de correlation dont les marges sont donnees , 1951 .

[76]  Albert Tarantola,et al.  Monte Carlo sampling of solutions to inverse problems , 1995 .

[77]  Biing-Hwang Juang,et al.  Fundamentals of speech recognition , 1993, Prentice Hall signal processing series.

[78]  G. Marsaglia,et al.  Evaluating the Anderson-Darling Distribution , 2004 .

[79]  C. Striebel,et al.  On the maximum likelihood estimates for linear dynamic systems , 1965 .

[80]  A. W. M. van den Enden,et al.  Discrete Time Signal Processing , 1989 .

[81]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[82]  David V. Sandberg,et al.  Modeling Large Forest Fires as Extreme Events , 1998 .

[83]  John Aitchison,et al.  Statistical Prediction Analysis , 1975 .

[84]  J. Hull Options, Futures, and Other Derivatives , 1989 .

[85]  P. Carr,et al.  Option valuation using the fast Fourier transform , 1999 .

[86]  David J. Fleet,et al.  Gaussian Process Dynamical Models , 2005, NIPS.

[87]  Margaret Armstrong,et al.  Dynamic Copula Processes: A new Way of Modelling CDO Tranches , 2008 .

[88]  Radford M. Neal Monte Carlo Implementation of Gaussian Process Models for Bayesian Regression and Classification , 1997, physics/9701026.

[89]  Geoffrey E. Hinton,et al.  Bayesian Learning for Neural Networks , 1995 .

[90]  R. Katz On Some Criteria for Estimating the Order of a Markov Chain , 1981 .

[91]  L. Bauwens,et al.  Econometrics , 2005 .

[92]  Frederick Jelinek,et al.  Statistical methods for speech recognition , 1997 .

[93]  Andrew J. Patton Modelling Asymmetric Exchange Rate Dependence , 2006 .

[94]  S. Shreve Stochastic Calculus for Finance II: Continuous-Time Models , 2010 .

[95]  S. Kotz,et al.  Symmetric Multivariate and Related Distributions , 1989 .