Accessibility in Transitive Graphs

We prove that the cut space of any transitive graph G is a finitely generated Aut(G)-module if the same is true for its cycle space. This confirms a conjecture of Diestel which says that every locally finite transitive graph whose cycle space is generated by cycles of bounded length is accessible. In addition, it implies Dunwoody’s conjecture that locally finite hyperbolic transitive graphs are accessible. As a further application, we obtain a combinatorial proof of Dunwoody’s accessibility theorem of finitely presented groups.

[1]  Wolfgang Woess,et al.  Topological groups and infinite graphs , 1991, Discret. Math..

[2]  John Stallings,et al.  Group Theory and Three-dimensional Manifolds , 1971 .

[3]  Volker Diekert,et al.  Context-Free Groups and their Structure Trees , 2012, Int. J. Algebra Comput..

[4]  H. Whitney Congruent Graphs and the Connectivity of Graphs , 1932 .

[5]  M. J. Dunwoody Accessibility and Groups of Cohomological Dimension One , 1979 .

[6]  Carsten Thomassen,et al.  Vertex-Transitive Graphs and Accessibility , 1993, J. Comb. Theory, Ser. B.

[7]  David Fisher,et al.  Coarse differentiation of quasi-isometries I: Spaces not quasi-isometric to Cayley graphs , 2006, math/0607207.

[8]  Matthias Hamann Generating the Cycle Space of Planar Graphs , 2015, Electron. J. Comb..

[9]  C. Wall,et al.  Pairs of relative cohomological dimension one , 1971 .

[10]  Ádám Timár,et al.  Cutsets in Infinite Graphs , 2006, Combinatorics, Probability and Computing.

[11]  É. Ghys,et al.  Sur Les Groupes Hyperboliques D'Apres Mikhael Gromov , 1990 .

[12]  W. T. Tutte Graph Theory , 1984 .

[13]  Warren Dicks,et al.  Groups Acting on Graphs , 1989 .

[14]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[15]  Matthias Hamann Planar Transitive Graphs , 2018, Electron. J. Comb..

[16]  Martin J. Dunwoody Geometric Group Theory: An Inaccessible Group , 1993 .

[17]  Eric Babson,et al.  Cut sets and normed cohomology with applications to percolation , 1999 .

[18]  M. J. Dunwoody The accessibility of finitely presented groups , 1985 .

[19]  M. J. Dunwoody PLANAR GRAPHS AND COVERS , 2007, 0708.0920.

[20]  M. J. Dunwoody An Inaccessible Graph , 2011 .

[21]  R. Bieri,et al.  Valuations and Finitely Presented Metabelian Groups , 1980 .

[22]  P. Harpe,et al.  Metric Geometry of Locally Compact Groups , 2014, 1403.3796.

[23]  Brigitte Servatius,et al.  The Structure of Locally Finite Two-Connected Graphs , 1995, Electron. J. Comb..

[24]  Carl Droms Infinite-ended groups with planar Cayley graphs , 2006 .

[25]  Yves Cornulier On the quasi-isometric classification of locally compact groups , 2012, 1212.2229.

[26]  Quasi-actions on trees I. Bounded valence , 2000, math/0010136.