Differential heating: A versatile method for thermal conductivity measurements in high-energy-density matter

We propose a method for thermal conductivity measurements of high energy density matter based on differential heating. A temperature gradient is created either by surface heating of one material or at an interface between two materials by different energy deposition. The subsequent heat conduction across the temperature gradient is observed by various time-resolved probing techniques. Conceptual designs of such measurements using laser heating, proton heating, and x-ray heating are presented. The sensitivity of the measurements to thermal conductivity is confirmed by simulations.

[1]  J. Güdde,et al.  Electron and lattice dynamics following optical excitation of metals , 2000 .

[2]  Alfredo A. Correa,et al.  Ballistic electron transport in non-equilibrium warm dense gold , 2012 .

[3]  Stephen M. Lane,et al.  HYADES—A plasma hydrodynamics code for dense plasma studies , 1994 .

[4]  P. Olson The New Core Paradox , 2013, Science.

[5]  H. J. Lee,et al.  Electronic structure of warm dense copper studied by ultrafast x-ray absorption spectroscopy. , 2011, Physical review letters.

[6]  Howard A. Padmore,et al.  A grazing incidence x-ray streak camera for ultrafast, single-shot measurements , 2010 .

[7]  B. L. Henke,et al.  X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92 , 1993 .

[8]  Gilbert W. Collins,et al.  Refraction-enhanced x-ray radiography for density profile measurements at CH/Be interface , 2011 .

[9]  Steven W. Haan,et al.  A comparison of three-dimensional multimode hydrodynamic instability growth on various National Ignition Facility capsule designs with HYDRA simulations , 1998 .

[10]  R. More,et al.  An electron conductivity model for dense plasmas , 1984 .

[11]  J. Kress,et al.  First-principles thermal conductivity of warm-dense deuterium plasmas for inertial confinement fusion applications. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  P. Combis,et al.  Picosecond short-range disordering in isochorically heated aluminum at solid density. , 2010, Physical review letters.

[13]  Sonnad,et al.  Purgatorio—a new implementation of the Inferno algorithm , 2005 .

[14]  Hans A. Bethe,et al.  On the Stopping of Fast Particles and on the Creation of Positive Electrons , 1934 .

[15]  Gilbert W. Collins,et al.  Broadband dielectric function of nonequilibrium warm dense gold. , 2006, Physical review letters.

[16]  T E Cowan,et al.  Isochoric heating of solid-density matter with an ultrafast proton beam. , 2003, Physical review letters.

[17]  Y. Ping,et al.  Optical properties in nonequilibrium phase transitions. , 2006, Physical review letters.

[18]  L. Veeser,et al.  Thermal transport in shock wave-compressed solids using pulsed laser heating. , 2014, The Review of scientific instruments.

[19]  F. Bloch,et al.  Bremsvermögen von Atomen mit mehreren Elektronen , 1933 .

[20]  Jay D. Salmonson,et al.  High-mode Rayleigh-Taylor growth in NIF ignition capsules , 2007 .

[21]  C. Davies,et al.  Thermal and electrical conductivity of iron at Earth’s core conditions , 2012, Nature.

[22]  Zhibin Lin,et al.  Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium , 2008 .

[23]  B. Militzer,et al.  Measurement of thermal diffusivity at high pressure using a transient heating technique , 2007 .

[24]  D. A. Callahan,et al.  Fuel gain exceeding unity in an inertially confined fusion implosion , 2014, Nature.

[25]  Y. Ping,et al.  Equation-of-state measurement of dense plasmas heated with fast protons. , 2008, Physical review letters.

[26]  Deanna M. Pennington,et al.  Energetic proton generation in ultra-intense laser–solid interactions , 2000 .

[27]  O. Landen,et al.  Development of a Laser-Produced Plasma X-Ray Source for Phase-Contrast Radiography of D-T Ice Layers , 2009 .

[28]  O. Landen,et al.  Refraction-enhanced x-ray radiography for inertial confinement fusion and laser-produced plasma applications , 2009 .

[29]  D. Krol,et al.  The Electronic Structure of Warm Dense Silicon Dioxide , 2013 .

[30]  J. Gauthier,et al.  Single-shot spectral interferometry of femtosecond laser-produced plasmas , 2000 .

[31]  Bruno Villette,et al.  Efficient multi-keV X-ray sources from laser-exploded metallic thin foils , 2008 .