Brain Tumor Segmentation Using a 3D FCN with Multi-scale Loss

In this work, we use a 3D Fully Connected Network (FCN) architecture for brain tumor segmentation. Our method includes a multi-scale loss function on predictions given at each resolution of the FCN. Using this approach, the higher resolution features can be combined with the initial segmentation at a lower resolution so that the FCN models context in both the image and label domains. The model is trained using a multi-scale loss function and a curriculum on sample weights is employed to address class imbalance. We achieved competitive results during the testing phase of the BraTS 2017 Challenge for segmentation with Dice scores of 0.710, 0.860, and 0.783 for enhancing tumor, whole tumor, and tumor core, respectively.