Position-based motion perception for color and texture stimuli: effects of contrast and speed

[1]  Vision Research , 1961, Nature.

[2]  Thorne Shipley,et al.  Classics in Psychology , 1964 .

[3]  W. Reichardt,et al.  Autocorrelation, a principle for the evaluation of sensory information by the central nervous system , 1961 .

[4]  O. Braddick A short-range process in apparent motion. , 1974, Vision research.

[5]  V. S. RAMACHANDRAN,et al.  Does colour provide an input to human motion perception? , 1978, Nature.

[6]  D. Hood,et al.  Psychophysical tests of models of the response function , 1979, Vision Research.

[7]  S. Ullman,et al.  The interpretation of visual motion , 1977 .

[8]  S. Anstis The perception of apparent movement. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[9]  K. Nakayama,et al.  Psychophysical isolation of movement sensitivity by removal of familiar position cues , 1981, Vision Research.

[10]  O E Favreau,et al.  Perceived velocity of moving chromatic gratings. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[11]  Curtis L. Baker,et al.  A motion aftereffect from an isoluminant stimulus , 1985, Vision Research.

[12]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[13]  A. Derrington,et al.  Separate detectors for simple and complex grating patterns? , 1985, Vision Research.

[14]  J. van Santen,et al.  Elaborated Reichardt detectors. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[15]  Patrick Cavanagh,et al.  Color and luminance share a common motion pathway , 1985, Vision Research.

[16]  David R. Badcock,et al.  The low level motion system has both chromatic and luminance inputs , 1985, Vision Research.

[17]  P. Cavanagh,et al.  Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[18]  G. Sperling,et al.  Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception. , 1988, Journal of the Optical Society of America. A, Optics and image science.

[19]  Patrick Cavanagh,et al.  Interattribute apparent motion , 1989, Vision Research.

[20]  P. Cavanagh,et al.  Motion: the long and short of it. , 1989, Spatial vision.

[21]  G. Sperling Three stages and two systems of visual processing. , 1989, Spatial vision.

[22]  A. Pantle,et al.  On the mechanism that encodes the movement of contrast variations: Velocity discrimination , 1989, Vision Research.

[23]  Delwin T. Lindsey,et al.  Motion at isoluminance: Discrimination/ detection ratios for moving isoluminant gratings , 1990, Vision Research.

[24]  C W Tyler,et al.  Purely chromatic perception of motion in depth: Two eyes as sensitive as one , 1991, Perception & psychophysics.

[25]  Stuart Anstis,et al.  The contribution of color to motion in normal and color-deficient observers , 1991, Vision Research.

[26]  A. Pantle Immobility of some second-order stimuli in human peripheral vision. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[27]  P. McOwan,et al.  A computational model of the analysis of some first-order and second-order motion patterns by simple and complex cells , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[28]  T D Albright,et al.  Form-cue invariant motion processing in primate visual cortex. , 1992, Science.

[29]  K. T. Mullen,et al.  Absence of smooth motion perception in color vision , 1992, Vision Research.

[30]  A. Derrington,et al.  Detecting and discriminating the direction of motion of luminance and colour gratings , 1993, Vision Research.

[31]  James E. McCarthy Directional adaptation effects with contrast modulated stimuli , 1993, Vision Research.

[32]  A. Derrington,et al.  Discriminating the direction of second-order motion at short stimulus durations , 1993, Vision Research.

[33]  Andrew M. Derrington,et al.  Motion of chromatic stimuli: First-order or second-order? , 1994, Vision Research.

[34]  Karl R. Gegenfurtner,et al.  Contrast dependence of colour and luminance motion mechanisms in human vision , 1994, Nature.

[35]  D. Badcock,et al.  Discriminating smooth from sampled motion: chromatic and luminance stimuli , 1994 .

[36]  T. Ledgeway Adaptation to second-order motion results in a motion aftereffect for directionally-ambiguous test stimuli , 1994, Vision Research.

[37]  A. T. Smith,et al.  Direction identification thresholds for second-order motion in central and peripheral vision. , 1994, Journal of the Optical Society of America. A, Optics, image science, and vision.

[38]  A. T. Smith,et al.  Correspondence-based and energy-based detection of second-order motion in human vision. , 1994, Journal of the Optical Society of America. A, Optics, image science, and vision.

[39]  C F Stromeyer,et al.  Contributions of human long‐wave and middle‐wave cones to motion detection. , 1995, The Journal of physiology.

[40]  George Sperling,et al.  1st- and 2nd-order motion and texture resolution in central and peripheral vision , 1995, Vision Research.

[41]  G. Sperling,et al.  The functional architecture of human visual motion perception , 1995, Vision Research.

[42]  J. Zanker On the elementary mechanism underlying secondary motion processing. , 1996, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[43]  Andrew M. Derrington,et al.  Rapid colour-specific detection of motion in human vision , 1996, Nature.

[44]  J M Zanker Second-order motion perception in the peripheral visual field. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[45]  ANDREW T SMITH,et al.  Separate Detection of Moving Luminance and Contrast Modulations: Fact or Artifact? , 1997, Vision Research.

[46]  P. Cavanagh,et al.  Position displacement, not velocity, is the cue to motion detection of second-order stimuli , 1998, Vision Research.

[47]  L. P. O'Keefe,et al.  Processing of first- and second-order motion signals by neurons in area MT of the macaque monkey , 1998, Visual Neuroscience.

[48]  Patrick Cavanagh,et al.  Complete sparing of high-contrast color input to motion perception in cortical color blindness , 1998, Nature Neuroscience.

[49]  C. Stromeyer,et al.  Motion detection on flashed, stationary pedestal gratings: Evidence for an opponent-motion mechanism , 1998, Vision Research.

[50]  A. T. Smith,et al.  Sensitivity to second-order motion as a function of temporal frequency and eccentricity , 1998, Vision Research.