A Compressed Sampling and Dictionary Learning Framework for WDM-Based Distributed Fiber Sensing

We propose a compressed sampling and dictionary learning framework for fiber-optic sensing using wavelength-tunable lasers. A redundant dictionary is generated from a model for the reflected sensor signal. Imperfect prior knowledge is considered in terms of uncertain local and global parameters. To estimate a sparse representation and the dictionary parameters, we present an alternating minimization algorithm that is equipped with a pre-processing routine to handle dictionary coherence. The support of the obtained sparse signal indicates the reflection delays, which can be used to measure impairments along the sensing fiber. The performance is evaluated by simulations and experimental data for a fiber sensor system with common core architecture.

[1]  SkrettingKarl,et al.  Family of iterative LS-based dictionary learning algorithms, ILS-DLA, for sparse signal representation , 2007 .

[2]  A. Méndez,et al.  Specialty optical fibers handbook , 2007 .

[3]  L. B. Felsen,et al.  Theory of optical waveguides , 1979 .

[4]  A. Yariv Coupled-mode theory for guided-wave optics , 1973 .

[5]  Sanjeev Arora,et al.  New Algorithms for Learning Incoherent and Overcomplete Dictionaries , 2013, COLT.

[6]  Michael Elad,et al.  Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing , 2010 .

[7]  Jonathan Rigelsford,et al.  Fiber Optic Smart Structures , 2001 .

[8]  Ying Wu,et al.  Robust Dictionary Learning by Error Source Decomposition , 2013, 2013 IEEE International Conference on Computer Vision.

[9]  Hirotaka Igawa,et al.  Structural health monitoring by using fiber-optic distributed strain sensors with high spatial resolution , 2013 .

[10]  S. Abrate,et al.  Structural Monitoring with Fiber Optic Technology , 2001 .

[11]  Brian M. Sadler,et al.  Mixed-signal parallel compressed sensing and reception for cognitive radio , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[12]  H. Venghaus Wavelength Filters in Fibre Optics , 2006 .

[13]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[14]  M. Lustig,et al.  Compressed Sensing MRI , 2008, IEEE Signal Processing Magazine.

[15]  S. Yamashita,et al.  Fast and wide tuning range wavelength-swept fiber laser based on dispersion tuning and its application to dynamic FBG sensing. , 2009, Optics express.

[16]  Abdelhak M. Zoubir,et al.  Fiber sensing using UFWT-lasers and sparse acquisition , 2013, 21st European Signal Processing Conference (EUSIPCO 2013).

[17]  Waheed U. Bajwa,et al.  Parametric dictionary learning for TWRI using distributed particle swarm optimization , 2016, 2016 IEEE Radar Conference (RadarConf).

[18]  Mike E. Davies,et al.  Sparse and shift-Invariant representations of music , 2006, IEEE Transactions on Audio, Speech, and Language Processing.

[19]  S. Muthukrishnan,et al.  Approximation of functions over redundant dictionaries using coherence , 2003, SODA '03.

[20]  Cewu Lu,et al.  Online Robust Dictionary Learning , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[21]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[22]  T. Erdogan Fiber grating spectra , 1997 .

[23]  Sylvain Lesage,et al.  Learning redundant dictionaries with translation invariance property: the MoTIF algorithm , 2005 .

[24]  Jared Tanner,et al.  Fast Reconstruction Algorithms for Periodic Nonuniform Sampling with Applications to Time-Interleaved ADCs , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[25]  Pierre Vandergheynst,et al.  Dictionary Preconditioning for Greedy Algorithms , 2008, IEEE Transactions on Signal Processing.

[26]  Lee C Potter,et al.  Pitfalls and possibilities of radar compressive sensing. , 2015, Applied optics.

[27]  Yonina C. Eldar,et al.  The Cramér-Rao Bound for Estimating a Sparse Parameter Vector , 2010, IEEE Transactions on Signal Processing.

[28]  B. Culshaw,et al.  Fiber-Optic Sensing: A Historical Perspective , 2008, Journal of Lightwave Technology.

[29]  Chen Yang,et al.  Hardware-efficient compressed sensing encoder designs for WBSNs , 2015, 2015 IEEE High Performance Extreme Computing Conference (HPEC).

[30]  Rémi Gribonval,et al.  Sparse and Spurious: Dictionary Learning With Noise and Outliers , 2014, IEEE Transactions on Information Theory.

[31]  Bhaskar D. Rao,et al.  A sparse Bayesian learning algorithm with dictionary parameter estimation , 2014, 2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM).

[32]  D. Malacara-Hernández,et al.  PRINCIPLES OF OPTICS , 2011 .

[33]  Cheng Lei,et al.  Photonic-assisted multi-channel compressive sampling based on effective time delay pattern. , 2013, Optics express.

[34]  Dmitry M. Malioutov,et al.  A sparse signal reconstruction perspective for source localization with sensor arrays , 2005, IEEE Transactions on Signal Processing.

[35]  Rémi Gribonval,et al.  Sparse representations in unions of bases , 2003, IEEE Trans. Inf. Theory.

[36]  Abdelhak M. Zoubir,et al.  Ieee Transactions on Aerospace and Electronic Systems Parametric Dictionary Learning for Sparsity-based Twri in Multipath Environments Ieee Transactions on Aerospace and Electronic Systems 2 , 2022 .

[37]  Prateek Jain,et al.  Learning Sparsely Used Overcomplete Dictionaries , 2014, COLT.

[38]  Michael Elad,et al.  Optimized Projections for Compressed Sensing , 2007, IEEE Transactions on Signal Processing.

[39]  Kyriacos Kalli,et al.  Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing , 2000 .

[40]  Rama Chellappa,et al.  Compressed Synthetic Aperture Radar , 2010, IEEE Journal of Selected Topics in Signal Processing.

[41]  Qun Wan,et al.  Adaptive Inter-Atom Interference Mitigation Approach to Sparse Multi-Path Channel Estimation , 2010, 2010 IEEE 71st Vehicular Technology Conference.

[42]  Christoffer Renner,et al.  Compressive laser ranging. , 2011, Optics letters.

[43]  Terrence J. Sejnowski,et al.  Learning Overcomplete Representations , 2000, Neural Computation.

[44]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[45]  T. Blumensath,et al.  Theory and Applications , 2011 .

[46]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[47]  Gerald Meltz,et al.  Fiber Optic Bragg Grating Sensors , 1990, Other Conferences.

[48]  M E Gehm,et al.  Compressive sensing in the EO/IR. , 2015, Applied optics.

[49]  Hooman Nabovati,et al.  Fiber Optic Sensors , 2008 .

[50]  Junzhou Huang,et al.  The Benefit of Group Sparsity , 2009 .

[51]  Yonina C. Eldar,et al.  Blind Multiband Signal Reconstruction: Compressed Sensing for Analog Signals , 2007, IEEE Transactions on Signal Processing.

[52]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[53]  Yonina C. Eldar,et al.  Xampling: Analog to digital at sub-Nyquist rates , 2009, IET Circuits Devices Syst..

[54]  Xavier Intes,et al.  Molecular Fluorescence Tomography with Structured Light and Compressive Sensing , 2015 .

[55]  Christian Jutten,et al.  Parametric dictionary learning using steepest descent , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[56]  P. Vaidyanathan,et al.  Periodically nonuniform sampling of bandpass signals , 1998 .

[57]  Liyuan Liu,et al.  A parallel delta-sigma ADC based on compressive sensing , 2013, 2013 IEEE International Conference of Electron Devices and Solid-state Circuits.

[58]  Amir Beck,et al.  On the Convergence of Block Coordinate Descent Type Methods , 2013, SIAM J. Optim..

[59]  Amir Rosenthal,et al.  Inverse scattering algorithm for reconstructing lossy fiber Bragg gratings. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[60]  Michael Elad,et al.  Dictionaries for Sparse Representation Modeling , 2010, Proceedings of the IEEE.

[61]  Emre Ertin,et al.  On the Relation Between Sparse Sampling and Parametric Estimation , 2009, 2009 IEEE 13th Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop.

[62]  Hongwei Liu,et al.  Radar Signal Parameter Estimation with Sparse Bayesian Representation Based on Zoom-Dictionary , 2014, 2014 IEEE International Conference on Computer and Information Technology.

[63]  Holger Rauhut,et al.  A Mathematical Introduction to Compressive Sensing , 2013, Applied and Numerical Harmonic Analysis.

[64]  B. Sorazu,et al.  The Detection of Ultrasound Using Fiber-Optic Sensors , 2008, IEEE Sensors Journal.

[65]  Michael B. Wakin,et al.  Analysis of Orthogonal Matching Pursuit Using the Restricted Isometry Property , 2009, IEEE Transactions on Information Theory.

[66]  Emre Ertin,et al.  On the Relation Between Sparse Reconstruction and Parameter Estimation With Model Order Selection , 2010, IEEE Journal of Selected Topics in Signal Processing.

[67]  Lie Wang,et al.  Orthogonal Matching Pursuit for Sparse Signal Recovery With Noise , 2011, IEEE Transactions on Information Theory.

[68]  M. Nakazawa,et al.  Dispersion-tuned harmonically mode-locked fiber ring laser for self-synchronization to an external clock. , 1996, Optics letters.

[69]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[70]  Kjersti Engan,et al.  Family of iterative LS-based dictionary learning algorithms, ILS-DLA, for sparse signal representation , 2007, Digit. Signal Process..

[71]  Michael A. Davis,et al.  Fiber grating sensors , 1997 .

[72]  Shinji Yamashita,et al.  Wide and Fast Wavelength-Swept Fiber Laser Based on Dispersion Tuning for Dynamic Sensing , 2009, J. Sensors.

[73]  Stephen B. Alexander Optical Communication Receiver Design , 1997 .

[74]  Raymond M. Measures,et al.  Fiber optic sensors for smart structures , 1992 .

[75]  Yonina C. Eldar,et al.  Xampling: Signal Acquisition and Processing in Union of Subspaces , 2009, IEEE Transactions on Signal Processing.

[76]  Thomas Strohmer,et al.  High-Resolution Radar via Compressed Sensing , 2008, IEEE Transactions on Signal Processing.

[77]  Pierre Vandergheynst,et al.  MoTIF: An Efficient Algorithm for Learning Translation Invariant Dictionaries , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[78]  Zabih Ghassemlooy,et al.  SOA gain uniformity improvement employing a non-uniform biasing technique for ultra-high speed optical routers , 2010, 2010 7th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP 2010).

[79]  Kazuo Hotate,et al.  Proposal and experimental verification of Bragg wavelength distribution measurement within a long-length FBG by synthesis of optical coherence function. , 2008, Optics express.

[80]  William Shieh,et al.  Optimal spectral and power parameters for all-optical wavelength shifting: single stage, fanout, and cascadability , 1995 .

[81]  Jesús M. Corres,et al.  Vibration Detection Using Optical Fiber Sensors , 2010, J. Sensors.

[82]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[83]  I. G. BONNER CLAPPISON Editor , 1960, The Electric Power Engineering Handbook - Five Volume Set.

[84]  Alan D. Kersey,et al.  Optical Fiber Sensors for Permanent Downwell Monitoring Applications in the Oil and Gas Industry , 2000 .

[85]  Hengyong Yu,et al.  Compressed sensing based interior tomography , 2009, Physics in medicine and biology.

[86]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[87]  Mike E. Davies,et al.  Parametric Dictionary Design for Sparse Coding , 2009, IEEE Transactions on Signal Processing.

[88]  Randolph L. Moses,et al.  Dynamic Dictionary Algorithms for Model Order and Parameter Estimation , 2013, IEEE Transactions on Signal Processing.

[89]  R. Kashyap Fiber Bragg Gratings , 1999 .

[90]  K. Porsezian,et al.  Fundamentals of Fibre Optics in Telecommunication and Sensor Systems , 2016 .

[91]  Pierre Vandergheynst,et al.  Compressed Sensing and Redundant Dictionaries , 2007, IEEE Transactions on Information Theory.

[92]  Søren Holdt Jensen,et al.  Compressive Parameter Estimation for Sparse Translation-Invariant Signals Using Polar Interpolation , 2013, IEEE Transactions on Signal Processing.

[93]  Michael Elad,et al.  A generalized uncertainty principle and sparse representation in pairs of bases , 2002, IEEE Trans. Inf. Theory.

[94]  Seb J Savory,et al.  Digital filters for coherent optical receivers. , 2008, Optics express.

[95]  B. Culshaw,et al.  Optical fiber sensor technologies: opportunities and-perhaps-pitfalls , 2004, Journal of Lightwave Technology.

[96]  Dimitris Achlioptas,et al.  Database-friendly random projections: Johnson-Lindenstrauss with binary coins , 2003, J. Comput. Syst. Sci..

[97]  Yonina C. Eldar,et al.  Compressed Sensing with Coherent and Redundant Dictionaries , 2010, ArXiv.

[98]  Kjersti Engan,et al.  Recursive Least Squares Dictionary Learning Algorithm , 2010, IEEE Transactions on Signal Processing.

[99]  Pascal Frossard,et al.  Dictionary Learning , 2011, IEEE Signal Processing Magazine.

[100]  Alan Pak Tao Lau,et al.  Coherent detection in optical fiber systems. , 2008, Optics express.

[101]  Tong Zhang,et al.  Sparse Recovery With Orthogonal Matching Pursuit Under RIP , 2010, IEEE Transactions on Information Theory.

[102]  R.G. Baraniuk,et al.  Compressive Sensing [Lecture Notes] , 2007, IEEE Signal Processing Magazine.

[103]  Abdelhak M. Zoubir,et al.  Fiber sensing using wavelength-swept lasers: A compressed sampling approach , 2015, 2015 3rd International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa).

[104]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .

[105]  M. Seimetz High-Order Modulation for Optical Fiber Transmission , 2009 .