A dimension series for multivariate splines

For a polyhedral subdivision Δ of a region in Euclideand-space, we consider the vector spaceCkr(Δ) consisting of allCr piecewise polynomial functions over Δ of degree at mostk. We consider the formal power series ∑k≥0 dimℝ Ckr(Δ)λk and show, under mild conditions on Δ, that this always has the formP(λ)/(1−λ)d+1, whereP(λ) is a polynomial in λ with integral coefficients which satisfiesP(0)=1,P(1)=fd (Δ), andP′(1)=(r+1)fd−10(Δ). We discuss how the polynomialP(λ) and bases for the spacesCkr(Δ) can be effectively calculated by use of Gröbner basis techniques of computational commutative algebra. A further application is given to the theory of hyperplane arrangements.

[1]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[2]  Bruce R. Piper,et al.  An explicit basis for C 1 quartic by various bivariate splines , 1987 .

[3]  Michael Francis Atiyah,et al.  Introduction to commutative algebra , 1969 .

[4]  Günter M. Ziegler,et al.  Combinatorial construction of logarithmic differential forms , 1989 .

[5]  Hiroaki Terao,et al.  A formula for the characteristic polynomial of an arrangement , 1987 .

[6]  O. Zariski,et al.  Commutative Algebra, Vol. I , 1959 .

[7]  Larry L. Schumaker,et al.  The dimension of bivariate spline spaces of smoothnessr for degreed≥4r+1 , 1987 .

[8]  F. S. Macaulay Some Properties of Enumeration in the Theory of Modular Systems , 1927 .

[9]  R. Stanley Combinatorics and commutative algebra , 1983 .

[10]  Hiroaki Terao,et al.  Arrangements of hyperplanes and their freeness I , 1980 .

[11]  Bernd Sturmfels,et al.  Grobner Bases and Invariant Theory , 1989 .

[12]  D. Buchsbaum,et al.  Commutative Algebra, Vol. II. , 1959 .

[13]  Daniel Lazard,et al.  Gröbner-Bases, Gaussian elimination and resolution of systems of algebraic equations , 1983, EUROCAL.

[14]  Peter F. Stiller VECTOR BUNDLES ON COMPLEX PROJECTIVE SPACES , 2010 .

[15]  Charles K. Chui,et al.  On smooth multivariate spline functions , 1983 .

[16]  Peter F. Stiller Certain reflexive sheaves on ⁿ_{} and a problem in approximation theory , 1983 .

[17]  Günter M. Ziegler Algebraic combinatorics of hyperplane arrangements , 1987 .

[18]  H. Terao,et al.  Hilbert polynomials and geometric lattices , 1990 .

[19]  Lorenzo Robbiano,et al.  Term Orderings on the Polynominal Ring , 1985, European Conference on Computer Algebra.

[20]  W. Whiteley Realizability of Polyhedra , 1979 .

[21]  B. Buchberger,et al.  Grobner Bases : An Algorithmic Method in Polynomial Ideal Theory , 1985 .

[22]  L. Billera,et al.  Gro¨bner basis methods for multivariate splines , 1989 .

[23]  L. Billera The algebra of continuous piecewise polynomials , 1989 .

[24]  L. Billera Homology of smooth splines: generic triangulations and a conjecture of Strang , 1988 .

[25]  G. M. Ziegler Multiarrangements of hyperplanes and their freeness , 1989 .

[26]  P. Orlik Introduction to arrangements , 1989 .

[27]  D. Bayer The division algorithm and the hilbert scheme , 1982 .

[28]  H. Crapo,et al.  Spatial Realizations of Linear Scenes , 1986 .

[29]  Kyoji Saito Theory of logarithmic differential forms and logarithmic vector fields , 1980 .

[30]  D. A. Spear A constructive approach to commutative ring theory , 1977 .